add yolo v10 and modify pipeline
This commit is contained in:
@ -4,4 +4,4 @@ from .predict import SegmentationPredictor
|
||||
from .train import SegmentationTrainer
|
||||
from .val import SegmentationValidator
|
||||
|
||||
__all__ = 'SegmentationPredictor', 'SegmentationTrainer', 'SegmentationValidator'
|
||||
__all__ = "SegmentationPredictor", "SegmentationTrainer", "SegmentationValidator"
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -21,23 +21,27 @@ class SegmentationPredictor(DetectionPredictor):
|
||||
"""
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
"""Initializes the SegmentationPredictor with the provided configuration, overrides, and callbacks."""
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
self.args.task = 'segment'
|
||||
self.args.task = "segment"
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
p = ops.non_max_suppression(preds[0],
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
agnostic=self.args.agnostic_nms,
|
||||
max_det=self.args.max_det,
|
||||
nc=len(self.model.names),
|
||||
classes=self.args.classes)
|
||||
"""Applies non-max suppression and processes detections for each image in an input batch."""
|
||||
p = ops.non_max_suppression(
|
||||
preds[0],
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
agnostic=self.args.agnostic_nms,
|
||||
max_det=self.args.max_det,
|
||||
nc=len(self.model.names),
|
||||
classes=self.args.classes,
|
||||
)
|
||||
|
||||
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
||||
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
||||
|
||||
results = []
|
||||
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
|
||||
proto = preds[1][-1] if isinstance(preds[1], tuple) else preds[1] # tuple if PyTorch model or array if exported
|
||||
for i, pred in enumerate(p):
|
||||
orig_img = orig_imgs[i]
|
||||
img_path = self.batch[0][i]
|
||||
|
@ -26,12 +26,12 @@ class SegmentationTrainer(yolo.detect.DetectionTrainer):
|
||||
"""Initialize a SegmentationTrainer object with given arguments."""
|
||||
if overrides is None:
|
||||
overrides = {}
|
||||
overrides['task'] = 'segment'
|
||||
overrides["task"] = "segment"
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
|
||||
def get_model(self, cfg=None, weights=None, verbose=True):
|
||||
"""Return SegmentationModel initialized with specified config and weights."""
|
||||
model = SegmentationModel(cfg, ch=3, nc=self.data['nc'], verbose=verbose and RANK == -1)
|
||||
model = SegmentationModel(cfg, ch=3, nc=self.data["nc"], verbose=verbose and RANK == -1)
|
||||
if weights:
|
||||
model.load(weights)
|
||||
|
||||
@ -39,19 +39,23 @@ class SegmentationTrainer(yolo.detect.DetectionTrainer):
|
||||
|
||||
def get_validator(self):
|
||||
"""Return an instance of SegmentationValidator for validation of YOLO model."""
|
||||
self.loss_names = 'box_loss', 'seg_loss', 'cls_loss', 'dfl_loss'
|
||||
return yolo.segment.SegmentationValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
|
||||
self.loss_names = "box_loss", "seg_loss", "cls_loss", "dfl_loss"
|
||||
return yolo.segment.SegmentationValidator(
|
||||
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
|
||||
)
|
||||
|
||||
def plot_training_samples(self, batch, ni):
|
||||
"""Creates a plot of training sample images with labels and box coordinates."""
|
||||
plot_images(batch['img'],
|
||||
batch['batch_idx'],
|
||||
batch['cls'].squeeze(-1),
|
||||
batch['bboxes'],
|
||||
batch['masks'],
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'train_batch{ni}.jpg',
|
||||
on_plot=self.on_plot)
|
||||
plot_images(
|
||||
batch["img"],
|
||||
batch["batch_idx"],
|
||||
batch["cls"].squeeze(-1),
|
||||
batch["bboxes"],
|
||||
masks=batch["masks"],
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"train_batch{ni}.jpg",
|
||||
on_plot=self.on_plot,
|
||||
)
|
||||
|
||||
def plot_metrics(self):
|
||||
"""Plots training/val metrics."""
|
||||
|
@ -33,13 +33,13 @@ class SegmentationValidator(DetectionValidator):
|
||||
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
|
||||
self.plot_masks = None
|
||||
self.process = None
|
||||
self.args.task = 'segment'
|
||||
self.args.task = "segment"
|
||||
self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
|
||||
|
||||
def preprocess(self, batch):
|
||||
"""Preprocesses batch by converting masks to float and sending to device."""
|
||||
batch = super().preprocess(batch)
|
||||
batch['masks'] = batch['masks'].to(self.device).float()
|
||||
batch["masks"] = batch["masks"].to(self.device).float()
|
||||
return batch
|
||||
|
||||
def init_metrics(self, model):
|
||||
@ -47,82 +47,99 @@ class SegmentationValidator(DetectionValidator):
|
||||
super().init_metrics(model)
|
||||
self.plot_masks = []
|
||||
if self.args.save_json:
|
||||
check_requirements('pycocotools>=2.0.6')
|
||||
check_requirements("pycocotools>=2.0.6")
|
||||
self.process = ops.process_mask_upsample # more accurate
|
||||
else:
|
||||
self.process = ops.process_mask # faster
|
||||
self.stats = dict(tp_m=[], tp=[], conf=[], pred_cls=[], target_cls=[])
|
||||
|
||||
def get_desc(self):
|
||||
"""Return a formatted description of evaluation metrics."""
|
||||
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P',
|
||||
'R', 'mAP50', 'mAP50-95)')
|
||||
return ("%22s" + "%11s" * 10) % (
|
||||
"Class",
|
||||
"Images",
|
||||
"Instances",
|
||||
"Box(P",
|
||||
"R",
|
||||
"mAP50",
|
||||
"mAP50-95)",
|
||||
"Mask(P",
|
||||
"R",
|
||||
"mAP50",
|
||||
"mAP50-95)",
|
||||
)
|
||||
|
||||
def postprocess(self, preds):
|
||||
"""Post-processes YOLO predictions and returns output detections with proto."""
|
||||
p = ops.non_max_suppression(preds[0],
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
multi_label=True,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
nc=self.nc)
|
||||
p = ops.non_max_suppression(
|
||||
preds[0],
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
multi_label=True,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
nc=self.nc,
|
||||
)
|
||||
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
|
||||
return p, proto
|
||||
|
||||
def _prepare_batch(self, si, batch):
|
||||
"""Prepares a batch for training or inference by processing images and targets."""
|
||||
prepared_batch = super()._prepare_batch(si, batch)
|
||||
midx = [si] if self.args.overlap_mask else batch["batch_idx"] == si
|
||||
prepared_batch["masks"] = batch["masks"][midx]
|
||||
return prepared_batch
|
||||
|
||||
def _prepare_pred(self, pred, pbatch, proto):
|
||||
"""Prepares a batch for training or inference by processing images and targets."""
|
||||
predn = super()._prepare_pred(pred, pbatch)
|
||||
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=pbatch["imgsz"])
|
||||
return predn, pred_masks
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
"""Metrics."""
|
||||
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
|
||||
idx = batch['batch_idx'] == si
|
||||
cls = batch['cls'][idx]
|
||||
bbox = batch['bboxes'][idx]
|
||||
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
|
||||
shape = batch['ori_shape'][si]
|
||||
correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||
self.seen += 1
|
||||
|
||||
npr = len(pred)
|
||||
stat = dict(
|
||||
conf=torch.zeros(0, device=self.device),
|
||||
pred_cls=torch.zeros(0, device=self.device),
|
||||
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
||||
tp_m=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
||||
)
|
||||
pbatch = self._prepare_batch(si, batch)
|
||||
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox")
|
||||
nl = len(cls)
|
||||
stat["target_cls"] = cls
|
||||
if npr == 0:
|
||||
if nl:
|
||||
self.stats.append((correct_bboxes, correct_masks, *torch.zeros(
|
||||
(2, 0), device=self.device), cls.squeeze(-1)))
|
||||
for k in self.stats.keys():
|
||||
self.stats[k].append(stat[k])
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
|
||||
self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls)
|
||||
continue
|
||||
|
||||
# Masks
|
||||
midx = [si] if self.args.overlap_mask else idx
|
||||
gt_masks = batch['masks'][midx]
|
||||
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch['img'][si].shape[1:])
|
||||
|
||||
gt_masks = pbatch.pop("masks")
|
||||
# Predictions
|
||||
if self.args.single_cls:
|
||||
pred[:, 5] = 0
|
||||
predn = pred.clone()
|
||||
ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape,
|
||||
ratio_pad=batch['ratio_pad'][si]) # native-space pred
|
||||
predn, pred_masks = self._prepare_pred(pred, pbatch, proto)
|
||||
stat["conf"] = predn[:, 4]
|
||||
stat["pred_cls"] = predn[:, 5]
|
||||
|
||||
# Evaluate
|
||||
if nl:
|
||||
height, width = batch['img'].shape[2:]
|
||||
tbox = ops.xywh2xyxy(bbox) * torch.tensor(
|
||||
(width, height, width, height), device=self.device) # target boxes
|
||||
ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape,
|
||||
ratio_pad=batch['ratio_pad'][si]) # native-space labels
|
||||
labelsn = torch.cat((cls, tbox), 1) # native-space labels
|
||||
correct_bboxes = self._process_batch(predn, labelsn)
|
||||
# TODO: maybe remove these `self.` arguments as they already are member variable
|
||||
correct_masks = self._process_batch(predn,
|
||||
labelsn,
|
||||
pred_masks,
|
||||
gt_masks,
|
||||
overlap=self.args.overlap_mask,
|
||||
masks=True)
|
||||
stat["tp"] = self._process_batch(predn, bbox, cls)
|
||||
stat["tp_m"] = self._process_batch(
|
||||
predn, bbox, cls, pred_masks, gt_masks, self.args.overlap_mask, masks=True
|
||||
)
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(predn, labelsn)
|
||||
self.confusion_matrix.process_batch(predn, bbox, cls)
|
||||
|
||||
# Append correct_masks, correct_boxes, pconf, pcls, tcls
|
||||
self.stats.append((correct_bboxes, correct_masks, pred[:, 4], pred[:, 5], cls.squeeze(-1)))
|
||||
for k in self.stats.keys():
|
||||
self.stats[k].append(stat[k])
|
||||
|
||||
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
|
||||
if self.args.plots and self.batch_i < 3:
|
||||
@ -130,10 +147,12 @@ class SegmentationValidator(DetectionValidator):
|
||||
|
||||
# Save
|
||||
if self.args.save_json:
|
||||
pred_masks = ops.scale_image(pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(),
|
||||
shape,
|
||||
ratio_pad=batch['ratio_pad'][si])
|
||||
self.pred_to_json(predn, batch['im_file'][si], pred_masks)
|
||||
pred_masks = ops.scale_image(
|
||||
pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(),
|
||||
pbatch["ori_shape"],
|
||||
ratio_pad=batch["ratio_pad"][si],
|
||||
)
|
||||
self.pred_to_json(predn, batch["im_file"][si], pred_masks)
|
||||
# if self.args.save_txt:
|
||||
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
||||
|
||||
@ -142,9 +161,9 @@ class SegmentationValidator(DetectionValidator):
|
||||
self.metrics.speed = self.speed
|
||||
self.metrics.confusion_matrix = self.confusion_matrix
|
||||
|
||||
def _process_batch(self, detections, labels, pred_masks=None, gt_masks=None, overlap=False, masks=False):
|
||||
def _process_batch(self, detections, gt_bboxes, gt_cls, pred_masks=None, gt_masks=None, overlap=False, masks=False):
|
||||
"""
|
||||
Return correct prediction matrix
|
||||
Return correct prediction matrix.
|
||||
|
||||
Args:
|
||||
detections (array[N, 6]), x1, y1, x2, y2, conf, class
|
||||
@ -155,52 +174,59 @@ class SegmentationValidator(DetectionValidator):
|
||||
"""
|
||||
if masks:
|
||||
if overlap:
|
||||
nl = len(labels)
|
||||
nl = len(gt_cls)
|
||||
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
|
||||
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
|
||||
gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
|
||||
if gt_masks.shape[1:] != pred_masks.shape[1:]:
|
||||
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0]
|
||||
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
|
||||
gt_masks = gt_masks.gt_(0.5)
|
||||
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
|
||||
else: # boxes
|
||||
iou = box_iou(labels[:, 1:], detections[:, :4])
|
||||
iou = box_iou(gt_bboxes, detections[:, :4])
|
||||
|
||||
return self.match_predictions(detections[:, 5], labels[:, 0], iou)
|
||||
return self.match_predictions(detections[:, 5], gt_cls, iou)
|
||||
|
||||
def plot_val_samples(self, batch, ni):
|
||||
"""Plots validation samples with bounding box labels."""
|
||||
plot_images(batch['img'],
|
||||
batch['batch_idx'],
|
||||
batch['cls'].squeeze(-1),
|
||||
batch['bboxes'],
|
||||
batch['masks'],
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
|
||||
names=self.names,
|
||||
on_plot=self.on_plot)
|
||||
plot_images(
|
||||
batch["img"],
|
||||
batch["batch_idx"],
|
||||
batch["cls"].squeeze(-1),
|
||||
batch["bboxes"],
|
||||
masks=batch["masks"],
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
|
||||
names=self.names,
|
||||
on_plot=self.on_plot,
|
||||
)
|
||||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
"""Plots batch predictions with masks and bounding boxes."""
|
||||
plot_images(
|
||||
batch['img'],
|
||||
batch["img"],
|
||||
*output_to_target(preds[0], max_det=15), # not set to self.args.max_det due to slow plotting speed
|
||||
torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks,
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
|
||||
names=self.names,
|
||||
on_plot=self.on_plot) # pred
|
||||
on_plot=self.on_plot,
|
||||
) # pred
|
||||
self.plot_masks.clear()
|
||||
|
||||
def pred_to_json(self, predn, filename, pred_masks):
|
||||
"""Save one JSON result."""
|
||||
# Example result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
|
||||
"""
|
||||
Save one JSON result.
|
||||
|
||||
Examples:
|
||||
>>> result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
|
||||
"""
|
||||
from pycocotools.mask import encode # noqa
|
||||
|
||||
def single_encode(x):
|
||||
"""Encode predicted masks as RLE and append results to jdict."""
|
||||
rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0]
|
||||
rle['counts'] = rle['counts'].decode('utf-8')
|
||||
rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0]
|
||||
rle["counts"] = rle["counts"].decode("utf-8")
|
||||
return rle
|
||||
|
||||
stem = Path(filename).stem
|
||||
@ -211,37 +237,41 @@ class SegmentationValidator(DetectionValidator):
|
||||
with ThreadPool(NUM_THREADS) as pool:
|
||||
rles = pool.map(single_encode, pred_masks)
|
||||
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
|
||||
self.jdict.append({
|
||||
'image_id': image_id,
|
||||
'category_id': self.class_map[int(p[5])],
|
||||
'bbox': [round(x, 3) for x in b],
|
||||
'score': round(p[4], 5),
|
||||
'segmentation': rles[i]})
|
||||
self.jdict.append(
|
||||
{
|
||||
"image_id": image_id,
|
||||
"category_id": self.class_map[int(p[5])],
|
||||
"bbox": [round(x, 3) for x in b],
|
||||
"score": round(p[4], 5),
|
||||
"segmentation": rles[i],
|
||||
}
|
||||
)
|
||||
|
||||
def eval_json(self, stats):
|
||||
"""Return COCO-style object detection evaluation metrics."""
|
||||
if self.args.save_json and self.is_coco and len(self.jdict):
|
||||
anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations
|
||||
pred_json = self.save_dir / 'predictions.json' # predictions
|
||||
LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
|
||||
anno_json = self.data["path"] / "annotations/instances_val2017.json" # annotations
|
||||
pred_json = self.save_dir / "predictions.json" # predictions
|
||||
LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...")
|
||||
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||||
check_requirements('pycocotools>=2.0.6')
|
||||
check_requirements("pycocotools>=2.0.6")
|
||||
from pycocotools.coco import COCO # noqa
|
||||
from pycocotools.cocoeval import COCOeval # noqa
|
||||
|
||||
for x in anno_json, pred_json:
|
||||
assert x.is_file(), f'{x} file not found'
|
||||
assert x.is_file(), f"{x} file not found"
|
||||
anno = COCO(str(anno_json)) # init annotations api
|
||||
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
|
||||
for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm')]):
|
||||
for i, eval in enumerate([COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "segm")]):
|
||||
if self.is_coco:
|
||||
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval
|
||||
eval.evaluate()
|
||||
eval.accumulate()
|
||||
eval.summarize()
|
||||
idx = i * 4 + 2
|
||||
stats[self.metrics.keys[idx + 1]], stats[
|
||||
self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50
|
||||
stats[self.metrics.keys[idx + 1]], stats[self.metrics.keys[idx]] = eval.stats[
|
||||
:2
|
||||
] # update mAP50-95 and mAP50
|
||||
except Exception as e:
|
||||
LOGGER.warning(f'pycocotools unable to run: {e}')
|
||||
LOGGER.warning(f"pycocotools unable to run: {e}")
|
||||
return stats
|
||||
|
Reference in New Issue
Block a user