add yolo v10 and modify pipeline

This commit is contained in:
王庆刚
2025-03-28 13:19:54 +08:00
parent 183299c06b
commit 798c596acc
471 changed files with 19109 additions and 7342 deletions

View File

@ -26,16 +26,18 @@ class PoseTrainer(yolo.detect.DetectionTrainer):
"""Initialize a PoseTrainer object with specified configurations and overrides."""
if overrides is None:
overrides = {}
overrides['task'] = 'pose'
overrides["task"] = "pose"
super().__init__(cfg, overrides, _callbacks)
if isinstance(self.args.device, str) and self.args.device.lower() == 'mps':
LOGGER.warning("WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
'See https://github.com/ultralytics/ultralytics/issues/4031.')
if isinstance(self.args.device, str) and self.args.device.lower() == "mps":
LOGGER.warning(
"WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
"See https://github.com/ultralytics/ultralytics/issues/4031."
)
def get_model(self, cfg=None, weights=None, verbose=True):
"""Get pose estimation model with specified configuration and weights."""
model = PoseModel(cfg, ch=3, nc=self.data['nc'], data_kpt_shape=self.data['kpt_shape'], verbose=verbose)
model = PoseModel(cfg, ch=3, nc=self.data["nc"], data_kpt_shape=self.data["kpt_shape"], verbose=verbose)
if weights:
model.load(weights)
@ -44,29 +46,33 @@ class PoseTrainer(yolo.detect.DetectionTrainer):
def set_model_attributes(self):
"""Sets keypoints shape attribute of PoseModel."""
super().set_model_attributes()
self.model.kpt_shape = self.data['kpt_shape']
self.model.kpt_shape = self.data["kpt_shape"]
def get_validator(self):
"""Returns an instance of the PoseValidator class for validation."""
self.loss_names = 'box_loss', 'pose_loss', 'kobj_loss', 'cls_loss', 'dfl_loss'
return yolo.pose.PoseValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
self.loss_names = "box_loss", "pose_loss", "kobj_loss", "cls_loss", "dfl_loss"
return yolo.pose.PoseValidator(
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
)
def plot_training_samples(self, batch, ni):
"""Plot a batch of training samples with annotated class labels, bounding boxes, and keypoints."""
images = batch['img']
kpts = batch['keypoints']
cls = batch['cls'].squeeze(-1)
bboxes = batch['bboxes']
paths = batch['im_file']
batch_idx = batch['batch_idx']
plot_images(images,
batch_idx,
cls,
bboxes,
kpts=kpts,
paths=paths,
fname=self.save_dir / f'train_batch{ni}.jpg',
on_plot=self.on_plot)
images = batch["img"]
kpts = batch["keypoints"]
cls = batch["cls"].squeeze(-1)
bboxes = batch["bboxes"]
paths = batch["im_file"]
batch_idx = batch["batch_idx"]
plot_images(
images,
batch_idx,
cls,
bboxes,
kpts=kpts,
paths=paths,
fname=self.save_dir / f"train_batch{ni}.jpg",
on_plot=self.on_plot,
)
def plot_metrics(self):
"""Plots training/val metrics."""