add yolo v10 and modify pipeline
This commit is contained in:
@ -4,4 +4,4 @@ from .predict import DetectionPredictor
|
||||
from .train import DetectionTrainer
|
||||
from .val import DetectionValidator
|
||||
|
||||
__all__ = 'DetectionPredictor', 'DetectionTrainer', 'DetectionValidator'
|
||||
__all__ = "DetectionPredictor", "DetectionTrainer", "DetectionValidator"
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -22,12 +22,14 @@ class DetectionPredictor(BasePredictor):
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
"""Post-processes predictions and returns a list of Results objects."""
|
||||
preds = ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
agnostic=self.args.agnostic_nms,
|
||||
max_det=self.args.max_det,
|
||||
classes=self.args.classes)
|
||||
preds = ops.non_max_suppression(
|
||||
preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
agnostic=self.args.agnostic_nms,
|
||||
max_det=self.args.max_det,
|
||||
classes=self.args.classes,
|
||||
)
|
||||
|
||||
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
||||
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
||||
|
@ -1,8 +1,11 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import math
|
||||
import random
|
||||
from copy import copy
|
||||
|
||||
import numpy as np
|
||||
import torch.nn as nn
|
||||
|
||||
from ultralytics.data import build_dataloader, build_yolo_dataset
|
||||
from ultralytics.engine.trainer import BaseTrainer
|
||||
@ -27,7 +30,7 @@ class DetectionTrainer(BaseTrainer):
|
||||
```
|
||||
"""
|
||||
|
||||
def build_dataset(self, img_path, mode='train', batch=None):
|
||||
def build_dataset(self, img_path, mode="train", batch=None):
|
||||
"""
|
||||
Build YOLO Dataset.
|
||||
|
||||
@ -37,53 +40,70 @@ class DetectionTrainer(BaseTrainer):
|
||||
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
|
||||
"""
|
||||
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
|
||||
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == 'val', stride=gs)
|
||||
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
|
||||
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
|
||||
"""Construct and return dataloader."""
|
||||
assert mode in ['train', 'val']
|
||||
assert mode in ["train", "val"]
|
||||
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
||||
dataset = self.build_dataset(dataset_path, mode, batch_size)
|
||||
shuffle = mode == 'train'
|
||||
if getattr(dataset, 'rect', False) and shuffle:
|
||||
shuffle = mode == "train"
|
||||
if getattr(dataset, "rect", False) and shuffle:
|
||||
LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False")
|
||||
shuffle = False
|
||||
workers = self.args.workers if mode == 'train' else self.args.workers * 2
|
||||
workers = self.args.workers if mode == "train" else self.args.workers * 2
|
||||
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # return dataloader
|
||||
|
||||
def preprocess_batch(self, batch):
|
||||
"""Preprocesses a batch of images by scaling and converting to float."""
|
||||
batch['img'] = batch['img'].to(self.device, non_blocking=True).float() / 255
|
||||
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
|
||||
if self.args.multi_scale:
|
||||
imgs = batch["img"]
|
||||
sz = (
|
||||
random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
|
||||
// self.stride
|
||||
* self.stride
|
||||
) # size
|
||||
sf = sz / max(imgs.shape[2:]) # scale factor
|
||||
if sf != 1:
|
||||
ns = [
|
||||
math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
|
||||
] # new shape (stretched to gs-multiple)
|
||||
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
|
||||
batch["img"] = imgs
|
||||
return batch
|
||||
|
||||
def set_model_attributes(self):
|
||||
"""nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)."""
|
||||
"""Nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)."""
|
||||
# self.args.box *= 3 / nl # scale to layers
|
||||
# self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
|
||||
# self.args.cls *= (self.args.imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
|
||||
self.model.nc = self.data['nc'] # attach number of classes to model
|
||||
self.model.names = self.data['names'] # attach class names to model
|
||||
self.model.nc = self.data["nc"] # attach number of classes to model
|
||||
self.model.names = self.data["names"] # attach class names to model
|
||||
self.model.args = self.args # attach hyperparameters to model
|
||||
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
|
||||
|
||||
def get_model(self, cfg=None, weights=None, verbose=True):
|
||||
"""Return a YOLO detection model."""
|
||||
model = DetectionModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1)
|
||||
model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
|
||||
if weights:
|
||||
model.load(weights)
|
||||
return model
|
||||
|
||||
def get_validator(self):
|
||||
"""Returns a DetectionValidator for YOLO model validation."""
|
||||
self.loss_names = 'box_loss', 'cls_loss', 'dfl_loss'
|
||||
return yolo.detect.DetectionValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
|
||||
self.loss_names = "box_loss", "cls_loss", "dfl_loss"
|
||||
return yolo.detect.DetectionValidator(
|
||||
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
|
||||
)
|
||||
|
||||
def label_loss_items(self, loss_items=None, prefix='train'):
|
||||
def label_loss_items(self, loss_items=None, prefix="train"):
|
||||
"""
|
||||
Returns a loss dict with labelled training loss items tensor. Not needed for classification but necessary for
|
||||
segmentation & detection
|
||||
Returns a loss dict with labelled training loss items tensor.
|
||||
|
||||
Not needed for classification but necessary for segmentation & detection
|
||||
"""
|
||||
keys = [f'{prefix}/{x}' for x in self.loss_names]
|
||||
keys = [f"{prefix}/{x}" for x in self.loss_names]
|
||||
if loss_items is not None:
|
||||
loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats
|
||||
return dict(zip(keys, loss_items))
|
||||
@ -92,18 +112,25 @@ class DetectionTrainer(BaseTrainer):
|
||||
|
||||
def progress_string(self):
|
||||
"""Returns a formatted string of training progress with epoch, GPU memory, loss, instances and size."""
|
||||
return ('\n' + '%11s' *
|
||||
(4 + len(self.loss_names))) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
|
||||
return ("\n" + "%11s" * (4 + len(self.loss_names))) % (
|
||||
"Epoch",
|
||||
"GPU_mem",
|
||||
*self.loss_names,
|
||||
"Instances",
|
||||
"Size",
|
||||
)
|
||||
|
||||
def plot_training_samples(self, batch, ni):
|
||||
"""Plots training samples with their annotations."""
|
||||
plot_images(images=batch['img'],
|
||||
batch_idx=batch['batch_idx'],
|
||||
cls=batch['cls'].squeeze(-1),
|
||||
bboxes=batch['bboxes'],
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'train_batch{ni}.jpg',
|
||||
on_plot=self.on_plot)
|
||||
plot_images(
|
||||
images=batch["img"],
|
||||
batch_idx=batch["batch_idx"],
|
||||
cls=batch["cls"].squeeze(-1),
|
||||
bboxes=batch["bboxes"],
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"train_batch{ni}.jpg",
|
||||
on_plot=self.on_plot,
|
||||
)
|
||||
|
||||
def plot_metrics(self):
|
||||
"""Plots metrics from a CSV file."""
|
||||
@ -111,6 +138,6 @@ class DetectionTrainer(BaseTrainer):
|
||||
|
||||
def plot_training_labels(self):
|
||||
"""Create a labeled training plot of the YOLO model."""
|
||||
boxes = np.concatenate([lb['bboxes'] for lb in self.train_loader.dataset.labels], 0)
|
||||
cls = np.concatenate([lb['cls'] for lb in self.train_loader.dataset.labels], 0)
|
||||
plot_labels(boxes, cls.squeeze(), names=self.data['names'], save_dir=self.save_dir, on_plot=self.on_plot)
|
||||
boxes = np.concatenate([lb["bboxes"] for lb in self.train_loader.dataset.labels], 0)
|
||||
cls = np.concatenate([lb["cls"] for lb in self.train_loader.dataset.labels], 0)
|
||||
plot_labels(boxes, cls.squeeze(), names=self.data["names"], save_dir=self.save_dir, on_plot=self.on_plot)
|
||||
|
@ -12,7 +12,6 @@ from ultralytics.utils import LOGGER, ops
|
||||
from ultralytics.utils.checks import check_requirements
|
||||
from ultralytics.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
|
||||
from ultralytics.utils.plotting import output_to_target, plot_images
|
||||
from ultralytics.utils.torch_utils import de_parallel
|
||||
|
||||
|
||||
class DetectionValidator(BaseValidator):
|
||||
@ -35,35 +34,40 @@ class DetectionValidator(BaseValidator):
|
||||
self.nt_per_class = None
|
||||
self.is_coco = False
|
||||
self.class_map = None
|
||||
self.args.task = 'detect'
|
||||
self.args.task = "detect"
|
||||
self.metrics = DetMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
|
||||
self.iouv = torch.linspace(0.5, 0.95, 10) # iou vector for mAP@0.5:0.95
|
||||
self.iouv = torch.linspace(0.5, 0.95, 10) # IoU vector for mAP@0.5:0.95
|
||||
self.niou = self.iouv.numel()
|
||||
self.lb = [] # for autolabelling
|
||||
|
||||
def preprocess(self, batch):
|
||||
"""Preprocesses batch of images for YOLO training."""
|
||||
batch['img'] = batch['img'].to(self.device, non_blocking=True)
|
||||
batch['img'] = (batch['img'].half() if self.args.half else batch['img'].float()) / 255
|
||||
for k in ['batch_idx', 'cls', 'bboxes']:
|
||||
batch["img"] = batch["img"].to(self.device, non_blocking=True)
|
||||
batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 255
|
||||
for k in ["batch_idx", "cls", "bboxes"]:
|
||||
batch[k] = batch[k].to(self.device)
|
||||
|
||||
if self.args.save_hybrid:
|
||||
height, width = batch['img'].shape[2:]
|
||||
nb = len(batch['img'])
|
||||
bboxes = batch['bboxes'] * torch.tensor((width, height, width, height), device=self.device)
|
||||
self.lb = [
|
||||
torch.cat([batch['cls'][batch['batch_idx'] == i], bboxes[batch['batch_idx'] == i]], dim=-1)
|
||||
for i in range(nb)] if self.args.save_hybrid else [] # for autolabelling
|
||||
height, width = batch["img"].shape[2:]
|
||||
nb = len(batch["img"])
|
||||
bboxes = batch["bboxes"] * torch.tensor((width, height, width, height), device=self.device)
|
||||
self.lb = (
|
||||
[
|
||||
torch.cat([batch["cls"][batch["batch_idx"] == i], bboxes[batch["batch_idx"] == i]], dim=-1)
|
||||
for i in range(nb)
|
||||
]
|
||||
if self.args.save_hybrid
|
||||
else []
|
||||
) # for autolabelling
|
||||
|
||||
return batch
|
||||
|
||||
def init_metrics(self, model):
|
||||
"""Initialize evaluation metrics for YOLO."""
|
||||
val = self.data.get(self.args.split, '') # validation path
|
||||
self.is_coco = isinstance(val, str) and 'coco' in val and val.endswith(f'{os.sep}val2017.txt') # is COCO
|
||||
val = self.data.get(self.args.split, "") # validation path
|
||||
self.is_coco = isinstance(val, str) and "coco" in val and val.endswith(f"{os.sep}val2017.txt") # is COCO
|
||||
self.class_map = converter.coco80_to_coco91_class() if self.is_coco else list(range(1000))
|
||||
self.args.save_json |= self.is_coco and not self.training # run on final val if training COCO
|
||||
self.args.save_json |= self.is_coco # run on final val if training COCO
|
||||
self.names = model.names
|
||||
self.nc = len(model.names)
|
||||
self.metrics.names = self.names
|
||||
@ -71,67 +75,88 @@ class DetectionValidator(BaseValidator):
|
||||
self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf)
|
||||
self.seen = 0
|
||||
self.jdict = []
|
||||
self.stats = []
|
||||
self.stats = dict(tp=[], conf=[], pred_cls=[], target_cls=[])
|
||||
|
||||
def get_desc(self):
|
||||
"""Return a formatted string summarizing class metrics of YOLO model."""
|
||||
return ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)')
|
||||
return ("%22s" + "%11s" * 6) % ("Class", "Images", "Instances", "Box(P", "R", "mAP50", "mAP50-95)")
|
||||
|
||||
def postprocess(self, preds):
|
||||
"""Apply Non-maximum suppression to prediction outputs."""
|
||||
return ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
multi_label=True,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det)
|
||||
return ops.non_max_suppression(
|
||||
preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
multi_label=True,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
)
|
||||
|
||||
def _prepare_batch(self, si, batch):
|
||||
"""Prepares a batch of images and annotations for validation."""
|
||||
idx = batch["batch_idx"] == si
|
||||
cls = batch["cls"][idx].squeeze(-1)
|
||||
bbox = batch["bboxes"][idx]
|
||||
ori_shape = batch["ori_shape"][si]
|
||||
imgsz = batch["img"].shape[2:]
|
||||
ratio_pad = batch["ratio_pad"][si]
|
||||
if len(cls):
|
||||
bbox = ops.xywh2xyxy(bbox) * torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]] # target boxes
|
||||
ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad) # native-space labels
|
||||
return dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad)
|
||||
|
||||
def _prepare_pred(self, pred, pbatch):
|
||||
"""Prepares a batch of images and annotations for validation."""
|
||||
predn = pred.clone()
|
||||
ops.scale_boxes(
|
||||
pbatch["imgsz"], predn[:, :4], pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"]
|
||||
) # native-space pred
|
||||
return predn
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
"""Metrics."""
|
||||
for si, pred in enumerate(preds):
|
||||
idx = batch['batch_idx'] == si
|
||||
cls = batch['cls'][idx]
|
||||
bbox = batch['bboxes'][idx]
|
||||
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
|
||||
shape = batch['ori_shape'][si]
|
||||
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||
self.seen += 1
|
||||
|
||||
npr = len(pred)
|
||||
stat = dict(
|
||||
conf=torch.zeros(0, device=self.device),
|
||||
pred_cls=torch.zeros(0, device=self.device),
|
||||
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
||||
)
|
||||
pbatch = self._prepare_batch(si, batch)
|
||||
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox")
|
||||
nl = len(cls)
|
||||
stat["target_cls"] = cls
|
||||
if npr == 0:
|
||||
if nl:
|
||||
self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1)))
|
||||
for k in self.stats.keys():
|
||||
self.stats[k].append(stat[k])
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
|
||||
self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls)
|
||||
continue
|
||||
|
||||
# Predictions
|
||||
if self.args.single_cls:
|
||||
pred[:, 5] = 0
|
||||
predn = pred.clone()
|
||||
ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape,
|
||||
ratio_pad=batch['ratio_pad'][si]) # native-space pred
|
||||
predn = self._prepare_pred(pred, pbatch)
|
||||
stat["conf"] = predn[:, 4]
|
||||
stat["pred_cls"] = predn[:, 5]
|
||||
|
||||
# Evaluate
|
||||
if nl:
|
||||
height, width = batch['img'].shape[2:]
|
||||
tbox = ops.xywh2xyxy(bbox) * torch.tensor(
|
||||
(width, height, width, height), device=self.device) # target boxes
|
||||
ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape,
|
||||
ratio_pad=batch['ratio_pad'][si]) # native-space labels
|
||||
labelsn = torch.cat((cls, tbox), 1) # native-space labels
|
||||
correct_bboxes = self._process_batch(predn, labelsn)
|
||||
# TODO: maybe remove these `self.` arguments as they already are member variable
|
||||
stat["tp"] = self._process_batch(predn, bbox, cls)
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(predn, labelsn)
|
||||
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls)
|
||||
self.confusion_matrix.process_batch(predn, bbox, cls)
|
||||
for k in self.stats.keys():
|
||||
self.stats[k].append(stat[k])
|
||||
|
||||
# Save
|
||||
if self.args.save_json:
|
||||
self.pred_to_json(predn, batch['im_file'][si])
|
||||
self.pred_to_json(predn, batch["im_file"][si])
|
||||
if self.args.save_txt:
|
||||
file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt'
|
||||
self.save_one_txt(predn, self.args.save_conf, shape, file)
|
||||
file = self.save_dir / "labels" / f'{Path(batch["im_file"][si]).stem}.txt'
|
||||
self.save_one_txt(predn, self.args.save_conf, pbatch["ori_shape"], file)
|
||||
|
||||
def finalize_metrics(self, *args, **kwargs):
|
||||
"""Set final values for metrics speed and confusion matrix."""
|
||||
@ -140,19 +165,20 @@ class DetectionValidator(BaseValidator):
|
||||
|
||||
def get_stats(self):
|
||||
"""Returns metrics statistics and results dictionary."""
|
||||
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
|
||||
if len(stats) and stats[0].any():
|
||||
self.metrics.process(*stats)
|
||||
self.nt_per_class = np.bincount(stats[-1].astype(int), minlength=self.nc) # number of targets per class
|
||||
stats = {k: torch.cat(v, 0).cpu().numpy() for k, v in self.stats.items()} # to numpy
|
||||
if len(stats) and stats["tp"].any():
|
||||
self.metrics.process(**stats)
|
||||
self.nt_per_class = np.bincount(
|
||||
stats["target_cls"].astype(int), minlength=self.nc
|
||||
) # number of targets per class
|
||||
return self.metrics.results_dict
|
||||
|
||||
def print_results(self):
|
||||
"""Prints training/validation set metrics per class."""
|
||||
pf = '%22s' + '%11i' * 2 + '%11.3g' * len(self.metrics.keys) # print format
|
||||
LOGGER.info(pf % ('all', self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
|
||||
pf = "%22s" + "%11i" * 2 + "%11.3g" * len(self.metrics.keys) # print format
|
||||
LOGGER.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
|
||||
if self.nt_per_class.sum() == 0:
|
||||
LOGGER.warning(
|
||||
f'WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels')
|
||||
LOGGER.warning(f"WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels")
|
||||
|
||||
# Print results per class
|
||||
if self.args.verbose and not self.training and self.nc > 1 and len(self.stats):
|
||||
@ -161,12 +187,11 @@ class DetectionValidator(BaseValidator):
|
||||
|
||||
if self.args.plots:
|
||||
for normalize in True, False:
|
||||
self.confusion_matrix.plot(save_dir=self.save_dir,
|
||||
names=self.names.values(),
|
||||
normalize=normalize,
|
||||
on_plot=self.on_plot)
|
||||
self.confusion_matrix.plot(
|
||||
save_dir=self.save_dir, names=self.names.values(), normalize=normalize, on_plot=self.on_plot
|
||||
)
|
||||
|
||||
def _process_batch(self, detections, labels):
|
||||
def _process_batch(self, detections, gt_bboxes, gt_cls):
|
||||
"""
|
||||
Return correct prediction matrix.
|
||||
|
||||
@ -179,10 +204,10 @@ class DetectionValidator(BaseValidator):
|
||||
Returns:
|
||||
(torch.Tensor): Correct prediction matrix of shape [N, 10] for 10 IoU levels.
|
||||
"""
|
||||
iou = box_iou(labels[:, 1:], detections[:, :4])
|
||||
return self.match_predictions(detections[:, 5], labels[:, 0], iou)
|
||||
iou = box_iou(gt_bboxes, detections[:, :4])
|
||||
return self.match_predictions(detections[:, 5], gt_cls, iou)
|
||||
|
||||
def build_dataset(self, img_path, mode='val', batch=None):
|
||||
def build_dataset(self, img_path, mode="val", batch=None):
|
||||
"""
|
||||
Build YOLO Dataset.
|
||||
|
||||
@ -191,33 +216,36 @@ class DetectionValidator(BaseValidator):
|
||||
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
|
||||
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
|
||||
"""
|
||||
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
|
||||
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=gs)
|
||||
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=self.stride)
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size):
|
||||
"""Construct and return dataloader."""
|
||||
dataset = self.build_dataset(dataset_path, batch=batch_size, mode='val')
|
||||
dataset = self.build_dataset(dataset_path, batch=batch_size, mode="val")
|
||||
return build_dataloader(dataset, batch_size, self.args.workers, shuffle=False, rank=-1) # return dataloader
|
||||
|
||||
def plot_val_samples(self, batch, ni):
|
||||
"""Plot validation image samples."""
|
||||
plot_images(batch['img'],
|
||||
batch['batch_idx'],
|
||||
batch['cls'].squeeze(-1),
|
||||
batch['bboxes'],
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
|
||||
names=self.names,
|
||||
on_plot=self.on_plot)
|
||||
plot_images(
|
||||
batch["img"],
|
||||
batch["batch_idx"],
|
||||
batch["cls"].squeeze(-1),
|
||||
batch["bboxes"],
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
|
||||
names=self.names,
|
||||
on_plot=self.on_plot,
|
||||
)
|
||||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
"""Plots predicted bounding boxes on input images and saves the result."""
|
||||
plot_images(batch['img'],
|
||||
*output_to_target(preds, max_det=self.args.max_det),
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||
names=self.names,
|
||||
on_plot=self.on_plot) # pred
|
||||
plot_images(
|
||||
batch["img"],
|
||||
*output_to_target(preds, max_det=self.args.max_det),
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
|
||||
names=self.names,
|
||||
on_plot=self.on_plot,
|
||||
) # pred
|
||||
|
||||
def save_one_txt(self, predn, save_conf, shape, file):
|
||||
"""Save YOLO detections to a txt file in normalized coordinates in a specific format."""
|
||||
@ -225,8 +253,8 @@ class DetectionValidator(BaseValidator):
|
||||
for *xyxy, conf, cls in predn.tolist():
|
||||
xywh = (ops.xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||||
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
||||
with open(file, 'a') as f:
|
||||
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
||||
with open(file, "a") as f:
|
||||
f.write(("%g " * len(line)).rstrip() % line + "\n")
|
||||
|
||||
def pred_to_json(self, predn, filename):
|
||||
"""Serialize YOLO predictions to COCO json format."""
|
||||
@ -235,28 +263,31 @@ class DetectionValidator(BaseValidator):
|
||||
box = ops.xyxy2xywh(predn[:, :4]) # xywh
|
||||
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||||
for p, b in zip(predn.tolist(), box.tolist()):
|
||||
self.jdict.append({
|
||||
'image_id': image_id,
|
||||
'category_id': self.class_map[int(p[5])],
|
||||
'bbox': [round(x, 3) for x in b],
|
||||
'score': round(p[4], 5)})
|
||||
self.jdict.append(
|
||||
{
|
||||
"image_id": image_id,
|
||||
"category_id": self.class_map[int(p[5])],
|
||||
"bbox": [round(x, 3) for x in b],
|
||||
"score": round(p[4], 5),
|
||||
}
|
||||
)
|
||||
|
||||
def eval_json(self, stats):
|
||||
"""Evaluates YOLO output in JSON format and returns performance statistics."""
|
||||
if self.args.save_json and self.is_coco and len(self.jdict):
|
||||
anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations
|
||||
pred_json = self.save_dir / 'predictions.json' # predictions
|
||||
LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
|
||||
anno_json = self.data["path"] / "annotations/instances_val2017.json" # annotations
|
||||
pred_json = self.save_dir / "predictions.json" # predictions
|
||||
LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...")
|
||||
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||||
check_requirements('pycocotools>=2.0.6')
|
||||
check_requirements("pycocotools>=2.0.6")
|
||||
from pycocotools.coco import COCO # noqa
|
||||
from pycocotools.cocoeval import COCOeval # noqa
|
||||
|
||||
for x in anno_json, pred_json:
|
||||
assert x.is_file(), f'{x} file not found'
|
||||
assert x.is_file(), f"{x} file not found"
|
||||
anno = COCO(str(anno_json)) # init annotations api
|
||||
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
|
||||
eval = COCOeval(anno, pred, 'bbox')
|
||||
eval = COCOeval(anno, pred, "bbox")
|
||||
if self.is_coco:
|
||||
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # images to eval
|
||||
eval.evaluate()
|
||||
@ -264,5 +295,5 @@ class DetectionValidator(BaseValidator):
|
||||
eval.summarize()
|
||||
stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = eval.stats[:2] # update mAP50-95 and mAP50
|
||||
except Exception as e:
|
||||
LOGGER.warning(f'pycocotools unable to run: {e}')
|
||||
LOGGER.warning(f"pycocotools unable to run: {e}")
|
||||
return stats
|
||||
|
Reference in New Issue
Block a user