add yolo v10 and modify pipeline
This commit is contained in:
@ -1,6 +1,8 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import cv2
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from ultralytics.engine.predictor import BasePredictor
|
||||
from ultralytics.engine.results import Results
|
||||
@ -26,13 +28,23 @@ class ClassificationPredictor(BasePredictor):
|
||||
"""
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
"""Initializes ClassificationPredictor setting the task to 'classify'."""
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
self.args.task = 'classify'
|
||||
self.args.task = "classify"
|
||||
self._legacy_transform_name = "ultralytics.yolo.data.augment.ToTensor"
|
||||
|
||||
def preprocess(self, img):
|
||||
"""Converts input image to model-compatible data type."""
|
||||
if not isinstance(img, torch.Tensor):
|
||||
img = torch.stack([self.transforms(im) for im in img], dim=0)
|
||||
is_legacy_transform = any(
|
||||
self._legacy_transform_name in str(transform) for transform in self.transforms.transforms
|
||||
)
|
||||
if is_legacy_transform: # to handle legacy transforms
|
||||
img = torch.stack([self.transforms(im) for im in img], dim=0)
|
||||
else:
|
||||
img = torch.stack(
|
||||
[self.transforms(Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))) for im in img], dim=0
|
||||
)
|
||||
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
|
||||
return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
|
||||
|
||||
|
Reference in New Issue
Block a user