add yolo v10 and modify pipeline

This commit is contained in:
王庆刚
2025-03-28 13:19:54 +08:00
parent 183299c06b
commit 798c596acc
471 changed files with 19109 additions and 7342 deletions

View File

@ -1,6 +1,8 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import cv2
import torch
from PIL import Image
from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
@ -26,13 +28,23 @@ class ClassificationPredictor(BasePredictor):
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initializes ClassificationPredictor setting the task to 'classify'."""
super().__init__(cfg, overrides, _callbacks)
self.args.task = 'classify'
self.args.task = "classify"
self._legacy_transform_name = "ultralytics.yolo.data.augment.ToTensor"
def preprocess(self, img):
"""Converts input image to model-compatible data type."""
if not isinstance(img, torch.Tensor):
img = torch.stack([self.transforms(im) for im in img], dim=0)
is_legacy_transform = any(
self._legacy_transform_name in str(transform) for transform in self.transforms.transforms
)
if is_legacy_transform: # to handle legacy transforms
img = torch.stack([self.transforms(im) for im in img], dim=0)
else:
img = torch.stack(
[self.transforms(Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))) for im in img], dim=0
)
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)
return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32