add yolo v10 and modify pipeline
This commit is contained in:
@ -10,6 +10,21 @@ from ultralytics.nn.modules import MLPBlock
|
||||
|
||||
|
||||
class TwoWayTransformer(nn.Module):
|
||||
"""
|
||||
A Two-Way Transformer module that enables the simultaneous attention to both image and query points. This class
|
||||
serves as a specialized transformer decoder that attends to an input image using queries whose positional embedding
|
||||
is supplied. This is particularly useful for tasks like object detection, image segmentation, and point cloud
|
||||
processing.
|
||||
|
||||
Attributes:
|
||||
depth (int): The number of layers in the transformer.
|
||||
embedding_dim (int): The channel dimension for the input embeddings.
|
||||
num_heads (int): The number of heads for multihead attention.
|
||||
mlp_dim (int): The internal channel dimension for the MLP block.
|
||||
layers (nn.ModuleList): The list of TwoWayAttentionBlock layers that make up the transformer.
|
||||
final_attn_token_to_image (Attention): The final attention layer applied from the queries to the image.
|
||||
norm_final_attn (nn.LayerNorm): The layer normalization applied to the final queries.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -21,8 +36,7 @@ class TwoWayTransformer(nn.Module):
|
||||
attention_downsample_rate: int = 2,
|
||||
) -> None:
|
||||
"""
|
||||
A transformer decoder that attends to an input image using
|
||||
queries whose positional embedding is supplied.
|
||||
A transformer decoder that attends to an input image using queries whose positional embedding is supplied.
|
||||
|
||||
Args:
|
||||
depth (int): number of layers in the transformer
|
||||
@ -48,7 +62,8 @@ class TwoWayTransformer(nn.Module):
|
||||
activation=activation,
|
||||
attention_downsample_rate=attention_downsample_rate,
|
||||
skip_first_layer_pe=(i == 0),
|
||||
))
|
||||
)
|
||||
)
|
||||
|
||||
self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
|
||||
self.norm_final_attn = nn.LayerNorm(embedding_dim)
|
||||
@ -99,6 +114,23 @@ class TwoWayTransformer(nn.Module):
|
||||
|
||||
|
||||
class TwoWayAttentionBlock(nn.Module):
|
||||
"""
|
||||
An attention block that performs both self-attention and cross-attention in two directions: queries to keys and
|
||||
keys to queries. This block consists of four main layers: (1) self-attention on sparse inputs, (2) cross-attention
|
||||
of sparse inputs to dense inputs, (3) an MLP block on sparse inputs, and (4) cross-attention of dense inputs to
|
||||
sparse inputs.
|
||||
|
||||
Attributes:
|
||||
self_attn (Attention): The self-attention layer for the queries.
|
||||
norm1 (nn.LayerNorm): Layer normalization following the first attention block.
|
||||
cross_attn_token_to_image (Attention): Cross-attention layer from queries to keys.
|
||||
norm2 (nn.LayerNorm): Layer normalization following the second attention block.
|
||||
mlp (MLPBlock): MLP block that transforms the query embeddings.
|
||||
norm3 (nn.LayerNorm): Layer normalization following the MLP block.
|
||||
norm4 (nn.LayerNorm): Layer normalization following the third attention block.
|
||||
cross_attn_image_to_token (Attention): Cross-attention layer from keys to queries.
|
||||
skip_first_layer_pe (bool): Whether to skip the positional encoding in the first layer.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -171,8 +203,7 @@ class TwoWayAttentionBlock(nn.Module):
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
"""
|
||||
An attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and
|
||||
"""An attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and
|
||||
values.
|
||||
"""
|
||||
|
||||
@ -182,24 +213,37 @@ class Attention(nn.Module):
|
||||
num_heads: int,
|
||||
downsample_rate: int = 1,
|
||||
) -> None:
|
||||
"""
|
||||
Initializes the Attention model with the given dimensions and settings.
|
||||
|
||||
Args:
|
||||
embedding_dim (int): The dimensionality of the input embeddings.
|
||||
num_heads (int): The number of attention heads.
|
||||
downsample_rate (int, optional): The factor by which the internal dimensions are downsampled. Defaults to 1.
|
||||
|
||||
Raises:
|
||||
AssertionError: If 'num_heads' does not evenly divide the internal dimension (embedding_dim / downsample_rate).
|
||||
"""
|
||||
super().__init__()
|
||||
self.embedding_dim = embedding_dim
|
||||
self.internal_dim = embedding_dim // downsample_rate
|
||||
self.num_heads = num_heads
|
||||
assert self.internal_dim % num_heads == 0, 'num_heads must divide embedding_dim.'
|
||||
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
|
||||
|
||||
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
||||
|
||||
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
|
||||
@staticmethod
|
||||
def _separate_heads(x: Tensor, num_heads: int) -> Tensor:
|
||||
"""Separate the input tensor into the specified number of attention heads."""
|
||||
b, n, c = x.shape
|
||||
x = x.reshape(b, n, num_heads, c // num_heads)
|
||||
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
|
||||
|
||||
def _recombine_heads(self, x: Tensor) -> Tensor:
|
||||
@staticmethod
|
||||
def _recombine_heads(x: Tensor) -> Tensor:
|
||||
"""Recombine the separated attention heads into a single tensor."""
|
||||
b, n_heads, n_tokens, c_per_head = x.shape
|
||||
x = x.transpose(1, 2)
|
||||
|
Reference in New Issue
Block a user