add yolo v10 and modify pipeline
This commit is contained in:
@ -10,27 +10,41 @@ import torch.nn.functional as F
|
||||
from ultralytics.nn.modules import LayerNorm2d, MLPBlock
|
||||
|
||||
|
||||
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
|
||||
class ImageEncoderViT(nn.Module):
|
||||
"""
|
||||
An image encoder using Vision Transformer (ViT) architecture for encoding an image into a compact latent space. The
|
||||
encoder takes an image, splits it into patches, and processes these patches through a series of transformer blocks.
|
||||
The encoded patches are then processed through a neck to generate the final encoded representation.
|
||||
|
||||
This class and its supporting functions below lightly adapted from the ViTDet backbone available at
|
||||
https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py.
|
||||
|
||||
Attributes:
|
||||
img_size (int): Dimension of input images, assumed to be square.
|
||||
patch_embed (PatchEmbed): Module for patch embedding.
|
||||
pos_embed (nn.Parameter, optional): Absolute positional embedding for patches.
|
||||
blocks (nn.ModuleList): List of transformer blocks for processing patch embeddings.
|
||||
neck (nn.Sequential): Neck module to further process the output.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
img_size: int = 1024,
|
||||
patch_size: int = 16,
|
||||
in_chans: int = 3,
|
||||
embed_dim: int = 768,
|
||||
depth: int = 12,
|
||||
num_heads: int = 12,
|
||||
mlp_ratio: float = 4.0,
|
||||
out_chans: int = 256,
|
||||
qkv_bias: bool = True,
|
||||
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
||||
act_layer: Type[nn.Module] = nn.GELU,
|
||||
use_abs_pos: bool = True,
|
||||
use_rel_pos: bool = False,
|
||||
rel_pos_zero_init: bool = True,
|
||||
window_size: int = 0,
|
||||
global_attn_indexes: Tuple[int, ...] = (),
|
||||
self,
|
||||
img_size: int = 1024,
|
||||
patch_size: int = 16,
|
||||
in_chans: int = 3,
|
||||
embed_dim: int = 768,
|
||||
depth: int = 12,
|
||||
num_heads: int = 12,
|
||||
mlp_ratio: float = 4.0,
|
||||
out_chans: int = 256,
|
||||
qkv_bias: bool = True,
|
||||
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
||||
act_layer: Type[nn.Module] = nn.GELU,
|
||||
use_abs_pos: bool = True,
|
||||
use_rel_pos: bool = False,
|
||||
rel_pos_zero_init: bool = True,
|
||||
window_size: int = 0,
|
||||
global_attn_indexes: Tuple[int, ...] = (),
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
@ -100,6 +114,9 @@ class ImageEncoderViT(nn.Module):
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Processes input through patch embedding, applies positional embedding if present, and passes through blocks
|
||||
and neck.
|
||||
"""
|
||||
x = self.patch_embed(x)
|
||||
if self.pos_embed is not None:
|
||||
x = x + self.pos_embed
|
||||
@ -109,6 +126,22 @@ class ImageEncoderViT(nn.Module):
|
||||
|
||||
|
||||
class PromptEncoder(nn.Module):
|
||||
"""
|
||||
Encodes different types of prompts, including points, boxes, and masks, for input to SAM's mask decoder. The encoder
|
||||
produces both sparse and dense embeddings for the input prompts.
|
||||
|
||||
Attributes:
|
||||
embed_dim (int): Dimension of the embeddings.
|
||||
input_image_size (Tuple[int, int]): Size of the input image as (H, W).
|
||||
image_embedding_size (Tuple[int, int]): Spatial size of the image embedding as (H, W).
|
||||
pe_layer (PositionEmbeddingRandom): Module for random position embedding.
|
||||
num_point_embeddings (int): Number of point embeddings for different types of points.
|
||||
point_embeddings (nn.ModuleList): List of point embeddings.
|
||||
not_a_point_embed (nn.Embedding): Embedding for points that are not a part of any label.
|
||||
mask_input_size (Tuple[int, int]): Size of the input mask.
|
||||
mask_downscaling (nn.Sequential): Neural network for downscaling the mask.
|
||||
no_mask_embed (nn.Embedding): Embedding for cases where no mask is provided.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -157,20 +190,15 @@ class PromptEncoder(nn.Module):
|
||||
|
||||
def get_dense_pe(self) -> torch.Tensor:
|
||||
"""
|
||||
Returns the positional encoding used to encode point prompts,
|
||||
applied to a dense set of points the shape of the image encoding.
|
||||
Returns the positional encoding used to encode point prompts, applied to a dense set of points the shape of the
|
||||
image encoding.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Positional encoding with shape 1x(embed_dim)x(embedding_h)x(embedding_w)
|
||||
"""
|
||||
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
||||
|
||||
def _embed_points(
|
||||
self,
|
||||
points: torch.Tensor,
|
||||
labels: torch.Tensor,
|
||||
pad: bool,
|
||||
) -> torch.Tensor:
|
||||
def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor:
|
||||
"""Embeds point prompts."""
|
||||
points = points + 0.5 # Shift to center of pixel
|
||||
if pad:
|
||||
@ -204,9 +232,7 @@ class PromptEncoder(nn.Module):
|
||||
boxes: Optional[torch.Tensor],
|
||||
masks: Optional[torch.Tensor],
|
||||
) -> int:
|
||||
"""
|
||||
Gets the batch size of the output given the batch size of the input prompts.
|
||||
"""
|
||||
"""Gets the batch size of the output given the batch size of the input prompts."""
|
||||
if points is not None:
|
||||
return points[0].shape[0]
|
||||
elif boxes is not None:
|
||||
@ -217,6 +243,7 @@ class PromptEncoder(nn.Module):
|
||||
return 1
|
||||
|
||||
def _get_device(self) -> torch.device:
|
||||
"""Returns the device of the first point embedding's weight tensor."""
|
||||
return self.point_embeddings[0].weight.device
|
||||
|
||||
def forward(
|
||||
@ -251,23 +278,22 @@ class PromptEncoder(nn.Module):
|
||||
if masks is not None:
|
||||
dense_embeddings = self._embed_masks(masks)
|
||||
else:
|
||||
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1,
|
||||
1).expand(bs, -1, self.image_embedding_size[0],
|
||||
self.image_embedding_size[1])
|
||||
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
||||
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
||||
)
|
||||
|
||||
return sparse_embeddings, dense_embeddings
|
||||
|
||||
|
||||
class PositionEmbeddingRandom(nn.Module):
|
||||
"""
|
||||
Positional encoding using random spatial frequencies.
|
||||
"""
|
||||
"""Positional encoding using random spatial frequencies."""
|
||||
|
||||
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
||||
"""Initializes a position embedding using random spatial frequencies."""
|
||||
super().__init__()
|
||||
if scale is None or scale <= 0.0:
|
||||
scale = 1.0
|
||||
self.register_buffer('positional_encoding_gaussian_matrix', scale * torch.randn((2, num_pos_feats)))
|
||||
self.register_buffer("positional_encoding_gaussian_matrix", scale * torch.randn((2, num_pos_feats)))
|
||||
|
||||
# Set non-deterministic for forward() error 'cumsum_cuda_kernel does not have a deterministic implementation'
|
||||
torch.use_deterministic_algorithms(False)
|
||||
@ -275,11 +301,11 @@ class PositionEmbeddingRandom(nn.Module):
|
||||
|
||||
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
||||
"""Positionally encode points that are normalized to [0,1]."""
|
||||
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
||||
# Assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
||||
coords = 2 * coords - 1
|
||||
coords = coords @ self.positional_encoding_gaussian_matrix
|
||||
coords = 2 * np.pi * coords
|
||||
# outputs d_1 x ... x d_n x C shape
|
||||
# Outputs d_1 x ... x d_n x C shape
|
||||
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
||||
|
||||
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
||||
@ -304,7 +330,7 @@ class PositionEmbeddingRandom(nn.Module):
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
||||
"""Transformer blocks with support of window attention and residual propagation blocks."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -351,6 +377,7 @@ class Block(nn.Module):
|
||||
self.window_size = window_size
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Executes a forward pass through the transformer block with window attention and non-overlapping windows."""
|
||||
shortcut = x
|
||||
x = self.norm1(x)
|
||||
# Window partition
|
||||
@ -380,6 +407,8 @@ class Attention(nn.Module):
|
||||
input_size: Optional[Tuple[int, int]] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize Attention module.
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
num_heads (int): Number of attention heads.
|
||||
@ -391,19 +420,20 @@ class Attention(nn.Module):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
self.scale = head_dim ** -0.5
|
||||
self.scale = head_dim**-0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
|
||||
self.use_rel_pos = use_rel_pos
|
||||
if self.use_rel_pos:
|
||||
assert (input_size is not None), 'Input size must be provided if using relative positional encoding.'
|
||||
# initialize relative positional embeddings
|
||||
assert input_size is not None, "Input size must be provided if using relative positional encoding."
|
||||
# Initialize relative positional embeddings
|
||||
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
||||
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Applies the forward operation including attention, normalization, MLP, and indexing within window limits."""
|
||||
B, H, W, _ = x.shape
|
||||
# qkv with shape (3, B, nHead, H * W, C)
|
||||
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
@ -444,10 +474,12 @@ def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, T
|
||||
return windows, (Hp, Wp)
|
||||
|
||||
|
||||
def window_unpartition(windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int],
|
||||
hw: Tuple[int, int]) -> torch.Tensor:
|
||||
def window_unpartition(
|
||||
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Window unpartition into original sequences and removing padding.
|
||||
|
||||
Args:
|
||||
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
||||
window_size (int): window size.
|
||||
@ -470,8 +502,8 @@ def window_unpartition(windows: torch.Tensor, window_size: int, pad_hw: Tuple[in
|
||||
|
||||
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Get relative positional embeddings according to the relative positions of
|
||||
query and key sizes.
|
||||
Get relative positional embeddings according to the relative positions of query and key sizes.
|
||||
|
||||
Args:
|
||||
q_size (int): size of query q.
|
||||
k_size (int): size of key k.
|
||||
@ -487,7 +519,7 @@ def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor
|
||||
rel_pos_resized = F.interpolate(
|
||||
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
||||
size=max_rel_dist,
|
||||
mode='linear',
|
||||
mode="linear",
|
||||
)
|
||||
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
||||
else:
|
||||
@ -510,8 +542,9 @@ def add_decomposed_rel_pos(
|
||||
k_size: Tuple[int, int],
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
||||
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
||||
Calculate decomposed Relative Positional Embeddings from mvitv2 paper at
|
||||
https://github.com/facebookresearch/mvit/blob/main/mvit/models/attention.py.
|
||||
|
||||
Args:
|
||||
attn (Tensor): attention map.
|
||||
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
||||
@ -530,29 +563,30 @@ def add_decomposed_rel_pos(
|
||||
|
||||
B, _, dim = q.shape
|
||||
r_q = q.reshape(B, q_h, q_w, dim)
|
||||
rel_h = torch.einsum('bhwc,hkc->bhwk', r_q, Rh)
|
||||
rel_w = torch.einsum('bhwc,wkc->bhwk', r_q, Rw)
|
||||
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
||||
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
||||
|
||||
attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view(
|
||||
B, q_h * q_w, k_h * k_w)
|
||||
B, q_h * q_w, k_h * k_w
|
||||
)
|
||||
|
||||
return attn
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
"""
|
||||
Image to Patch Embedding.
|
||||
"""
|
||||
"""Image to Patch Embedding."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
kernel_size: Tuple[int, int] = (16, 16),
|
||||
stride: Tuple[int, int] = (16, 16),
|
||||
padding: Tuple[int, int] = (0, 0),
|
||||
in_chans: int = 3,
|
||||
embed_dim: int = 768,
|
||||
self,
|
||||
kernel_size: Tuple[int, int] = (16, 16),
|
||||
stride: Tuple[int, int] = (16, 16),
|
||||
padding: Tuple[int, int] = (0, 0),
|
||||
in_chans: int = 3,
|
||||
embed_dim: int = 768,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize PatchEmbed module.
|
||||
|
||||
Args:
|
||||
kernel_size (Tuple): kernel size of the projection layer.
|
||||
stride (Tuple): stride of the projection layer.
|
||||
@ -565,4 +599,5 @@ class PatchEmbed(nn.Module):
|
||||
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Computes patch embedding by applying convolution and transposing resulting tensor."""
|
||||
return self.proj(x).permute(0, 2, 3, 1) # B C H W -> B H W C
|
||||
|
Reference in New Issue
Block a user