add yolo v10 and modify pipeline
This commit is contained in:
@ -10,6 +10,21 @@ from ultralytics.nn.modules import LayerNorm2d
|
||||
|
||||
|
||||
class MaskDecoder(nn.Module):
|
||||
"""
|
||||
Decoder module for generating masks and their associated quality scores, using a transformer architecture to predict
|
||||
masks given image and prompt embeddings.
|
||||
|
||||
Attributes:
|
||||
transformer_dim (int): Channel dimension for the transformer module.
|
||||
transformer (nn.Module): The transformer module used for mask prediction.
|
||||
num_multimask_outputs (int): Number of masks to predict for disambiguating masks.
|
||||
iou_token (nn.Embedding): Embedding for the IoU token.
|
||||
num_mask_tokens (int): Number of mask tokens.
|
||||
mask_tokens (nn.Embedding): Embedding for the mask tokens.
|
||||
output_upscaling (nn.Sequential): Neural network sequence for upscaling the output.
|
||||
output_hypernetworks_mlps (nn.ModuleList): Hypernetwork MLPs for generating masks.
|
||||
iou_prediction_head (nn.Module): MLP for predicting mask quality.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -49,8 +64,9 @@ class MaskDecoder(nn.Module):
|
||||
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
||||
activation(),
|
||||
)
|
||||
self.output_hypernetworks_mlps = nn.ModuleList([
|
||||
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)])
|
||||
self.output_hypernetworks_mlps = nn.ModuleList(
|
||||
[MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]
|
||||
)
|
||||
|
||||
self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)
|
||||
|
||||
@ -98,10 +114,14 @@ class MaskDecoder(nn.Module):
|
||||
sparse_prompt_embeddings: torch.Tensor,
|
||||
dense_prompt_embeddings: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Predicts masks. See 'forward' for more details."""
|
||||
"""
|
||||
Predicts masks.
|
||||
|
||||
See 'forward' for more details.
|
||||
"""
|
||||
# Concatenate output tokens
|
||||
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
||||
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
|
||||
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.shape[0], -1, -1)
|
||||
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
||||
|
||||
# Expand per-image data in batch direction to be per-mask
|
||||
@ -113,13 +133,14 @@ class MaskDecoder(nn.Module):
|
||||
# Run the transformer
|
||||
hs, src = self.transformer(src, pos_src, tokens)
|
||||
iou_token_out = hs[:, 0, :]
|
||||
mask_tokens_out = hs[:, 1:(1 + self.num_mask_tokens), :]
|
||||
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
|
||||
|
||||
# Upscale mask embeddings and predict masks using the mask tokens
|
||||
src = src.transpose(1, 2).view(b, c, h, w)
|
||||
upscaled_embedding = self.output_upscaling(src)
|
||||
hyper_in_list: List[torch.Tensor] = [
|
||||
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)]
|
||||
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)
|
||||
]
|
||||
hyper_in = torch.stack(hyper_in_list, dim=1)
|
||||
b, c, h, w = upscaled_embedding.shape
|
||||
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
||||
@ -132,7 +153,7 @@ class MaskDecoder(nn.Module):
|
||||
|
||||
class MLP(nn.Module):
|
||||
"""
|
||||
Lightly adapted from
|
||||
MLP (Multi-Layer Perceptron) model lightly adapted from
|
||||
https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py
|
||||
"""
|
||||
|
||||
@ -144,6 +165,16 @@ class MLP(nn.Module):
|
||||
num_layers: int,
|
||||
sigmoid_output: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Initializes the MLP (Multi-Layer Perceptron) model.
|
||||
|
||||
Args:
|
||||
input_dim (int): The dimensionality of the input features.
|
||||
hidden_dim (int): The dimensionality of the hidden layers.
|
||||
output_dim (int): The dimensionality of the output layer.
|
||||
num_layers (int): The number of hidden layers.
|
||||
sigmoid_output (bool, optional): Apply a sigmoid activation to the output layer. Defaults to False.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_layers = num_layers
|
||||
h = [hidden_dim] * (num_layers - 1)
|
||||
|
Reference in New Issue
Block a user