add yolo v10 and modify pipeline
This commit is contained in:
@ -1,7 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.data import YOLODataset
|
||||
@ -9,16 +7,22 @@ from ultralytics.data.augment import Compose, Format, v8_transforms
|
||||
from ultralytics.models.yolo.detect import DetectionValidator
|
||||
from ultralytics.utils import colorstr, ops
|
||||
|
||||
__all__ = 'RTDETRValidator', # tuple or list
|
||||
__all__ = ("RTDETRValidator",) # tuple or list
|
||||
|
||||
|
||||
# TODO: Temporarily RT-DETR does not need padding.
|
||||
class RTDETRDataset(YOLODataset):
|
||||
"""
|
||||
Real-Time DEtection and TRacking (RT-DETR) dataset class extending the base YOLODataset class.
|
||||
|
||||
This specialized dataset class is designed for use with the RT-DETR object detection model and is optimized for
|
||||
real-time detection and tracking tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, data=None, **kwargs):
|
||||
super().__init__(*args, data=data, use_segments=False, use_keypoints=False, **kwargs)
|
||||
"""Initialize the RTDETRDataset class by inheriting from the YOLODataset class."""
|
||||
super().__init__(*args, data=data, **kwargs)
|
||||
|
||||
# NOTE: add stretch version load_image for rtdetr mosaic
|
||||
# NOTE: add stretch version load_image for RTDETR mosaic
|
||||
def load_image(self, i, rect_mode=False):
|
||||
"""Loads 1 image from dataset index 'i', returns (im, resized hw)."""
|
||||
return super().load_image(i=i, rect_mode=rect_mode)
|
||||
@ -33,19 +37,26 @@ class RTDETRDataset(YOLODataset):
|
||||
# transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scaleFill=True)])
|
||||
transforms = Compose([])
|
||||
transforms.append(
|
||||
Format(bbox_format='xywh',
|
||||
normalize=True,
|
||||
return_mask=self.use_segments,
|
||||
return_keypoint=self.use_keypoints,
|
||||
batch_idx=True,
|
||||
mask_ratio=hyp.mask_ratio,
|
||||
mask_overlap=hyp.overlap_mask))
|
||||
Format(
|
||||
bbox_format="xywh",
|
||||
normalize=True,
|
||||
return_mask=self.use_segments,
|
||||
return_keypoint=self.use_keypoints,
|
||||
batch_idx=True,
|
||||
mask_ratio=hyp.mask_ratio,
|
||||
mask_overlap=hyp.overlap_mask,
|
||||
)
|
||||
)
|
||||
return transforms
|
||||
|
||||
|
||||
class RTDETRValidator(DetectionValidator):
|
||||
"""
|
||||
A class extending the DetectionValidator class for validation based on an RT-DETR detection model.
|
||||
RTDETRValidator extends the DetectionValidator class to provide validation capabilities specifically tailored for
|
||||
the RT-DETR (Real-Time DETR) object detection model.
|
||||
|
||||
The class allows building of an RTDETR-specific dataset for validation, applies Non-maximum suppression for
|
||||
post-processing, and updates evaluation metrics accordingly.
|
||||
|
||||
Example:
|
||||
```python
|
||||
@ -55,9 +66,12 @@ class RTDETRValidator(DetectionValidator):
|
||||
validator = RTDETRValidator(args=args)
|
||||
validator()
|
||||
```
|
||||
|
||||
Note:
|
||||
For further details on the attributes and methods, refer to the parent DetectionValidator class.
|
||||
"""
|
||||
|
||||
def build_dataset(self, img_path, mode='val', batch=None):
|
||||
def build_dataset(self, img_path, mode="val", batch=None):
|
||||
"""
|
||||
Build an RTDETR Dataset.
|
||||
|
||||
@ -74,11 +88,15 @@ class RTDETRValidator(DetectionValidator):
|
||||
hyp=self.args,
|
||||
rect=False, # no rect
|
||||
cache=self.args.cache or None,
|
||||
prefix=colorstr(f'{mode}: '),
|
||||
data=self.data)
|
||||
prefix=colorstr(f"{mode}: "),
|
||||
data=self.data,
|
||||
)
|
||||
|
||||
def postprocess(self, preds):
|
||||
"""Apply Non-maximum suppression to prediction outputs."""
|
||||
if not isinstance(preds, (list, tuple)): # list for PyTorch inference but list[0] Tensor for export inference
|
||||
preds = [preds, None]
|
||||
|
||||
bs, _, nd = preds[0].shape
|
||||
bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
|
||||
bboxes *= self.args.imgsz
|
||||
@ -86,56 +104,32 @@ class RTDETRValidator(DetectionValidator):
|
||||
for i, bbox in enumerate(bboxes): # (300, 4)
|
||||
bbox = ops.xywh2xyxy(bbox)
|
||||
score, cls = scores[i].max(-1) # (300, )
|
||||
# Do not need threshold for evaluation as only got 300 boxes here.
|
||||
# Do not need threshold for evaluation as only got 300 boxes here
|
||||
# idx = score > self.args.conf
|
||||
pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter
|
||||
# sort by confidence to correctly get internal metrics.
|
||||
# Sort by confidence to correctly get internal metrics
|
||||
pred = pred[score.argsort(descending=True)]
|
||||
outputs[i] = pred # [idx]
|
||||
|
||||
return outputs
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
"""Metrics."""
|
||||
for si, pred in enumerate(preds):
|
||||
idx = batch['batch_idx'] == si
|
||||
cls = batch['cls'][idx]
|
||||
bbox = batch['bboxes'][idx]
|
||||
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
|
||||
shape = batch['ori_shape'][si]
|
||||
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||
self.seen += 1
|
||||
def _prepare_batch(self, si, batch):
|
||||
"""Prepares a batch for training or inference by applying transformations."""
|
||||
idx = batch["batch_idx"] == si
|
||||
cls = batch["cls"][idx].squeeze(-1)
|
||||
bbox = batch["bboxes"][idx]
|
||||
ori_shape = batch["ori_shape"][si]
|
||||
imgsz = batch["img"].shape[2:]
|
||||
ratio_pad = batch["ratio_pad"][si]
|
||||
if len(cls):
|
||||
bbox = ops.xywh2xyxy(bbox) # target boxes
|
||||
bbox[..., [0, 2]] *= ori_shape[1] # native-space pred
|
||||
bbox[..., [1, 3]] *= ori_shape[0] # native-space pred
|
||||
return dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad)
|
||||
|
||||
if npr == 0:
|
||||
if nl:
|
||||
self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1)))
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
|
||||
continue
|
||||
|
||||
# Predictions
|
||||
if self.args.single_cls:
|
||||
pred[:, 5] = 0
|
||||
predn = pred.clone()
|
||||
predn[..., [0, 2]] *= shape[1] / self.args.imgsz # native-space pred
|
||||
predn[..., [1, 3]] *= shape[0] / self.args.imgsz # native-space pred
|
||||
|
||||
# Evaluate
|
||||
if nl:
|
||||
tbox = ops.xywh2xyxy(bbox) # target boxes
|
||||
tbox[..., [0, 2]] *= shape[1] # native-space pred
|
||||
tbox[..., [1, 3]] *= shape[0] # native-space pred
|
||||
labelsn = torch.cat((cls, tbox), 1) # native-space labels
|
||||
# NOTE: To get correct metrics, the inputs of `_process_batch` should always be float32 type.
|
||||
correct_bboxes = self._process_batch(predn.float(), labelsn)
|
||||
# TODO: maybe remove these `self.` arguments as they already are member variable
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(predn, labelsn)
|
||||
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls)
|
||||
|
||||
# Save
|
||||
if self.args.save_json:
|
||||
self.pred_to_json(predn, batch['im_file'][si])
|
||||
if self.args.save_txt:
|
||||
file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt'
|
||||
self.save_one_txt(predn, self.args.save_conf, shape, file)
|
||||
def _prepare_pred(self, pred, pbatch):
|
||||
"""Prepares and returns a batch with transformed bounding boxes and class labels."""
|
||||
predn = pred.clone()
|
||||
predn[..., [0, 2]] *= pbatch["ori_shape"][1] / self.args.imgsz # native-space pred
|
||||
predn[..., [1, 3]] *= pbatch["ori_shape"][0] / self.args.imgsz # native-space pred
|
||||
return predn.float()
|
||||
|
||||
Reference in New Issue
Block a user