add yolo v10 and modify pipeline
This commit is contained in:
@ -13,54 +13,73 @@ from ultralytics.utils import TQDM
|
||||
|
||||
|
||||
class FastSAMPrompt:
|
||||
"""
|
||||
Fast Segment Anything Model class for image annotation and visualization.
|
||||
|
||||
def __init__(self, source, results, device='cuda') -> None:
|
||||
Attributes:
|
||||
device (str): Computing device ('cuda' or 'cpu').
|
||||
results: Object detection or segmentation results.
|
||||
source: Source image or image path.
|
||||
clip: CLIP model for linear assignment.
|
||||
"""
|
||||
|
||||
def __init__(self, source, results, device="cuda") -> None:
|
||||
"""Initializes FastSAMPrompt with given source, results and device, and assigns clip for linear assignment."""
|
||||
self.device = device
|
||||
self.results = results
|
||||
self.source = source
|
||||
|
||||
# Import and assign clip
|
||||
try:
|
||||
import clip # for linear_assignment
|
||||
import clip
|
||||
except ImportError:
|
||||
from ultralytics.utils.checks import check_requirements
|
||||
check_requirements('git+https://github.com/openai/CLIP.git')
|
||||
|
||||
check_requirements("git+https://github.com/openai/CLIP.git")
|
||||
import clip
|
||||
self.clip = clip
|
||||
|
||||
@staticmethod
|
||||
def _segment_image(image, bbox):
|
||||
"""Segments the given image according to the provided bounding box coordinates."""
|
||||
image_array = np.array(image)
|
||||
segmented_image_array = np.zeros_like(image_array)
|
||||
x1, y1, x2, y2 = bbox
|
||||
segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2]
|
||||
segmented_image = Image.fromarray(segmented_image_array)
|
||||
black_image = Image.new('RGB', image.size, (255, 255, 255))
|
||||
black_image = Image.new("RGB", image.size, (255, 255, 255))
|
||||
# transparency_mask = np.zeros_like((), dtype=np.uint8)
|
||||
transparency_mask = np.zeros((image_array.shape[0], image_array.shape[1]), dtype=np.uint8)
|
||||
transparency_mask[y1:y2, x1:x2] = 255
|
||||
transparency_mask_image = Image.fromarray(transparency_mask, mode='L')
|
||||
transparency_mask_image = Image.fromarray(transparency_mask, mode="L")
|
||||
black_image.paste(segmented_image, mask=transparency_mask_image)
|
||||
return black_image
|
||||
|
||||
@staticmethod
|
||||
def _format_results(result, filter=0):
|
||||
"""Formats detection results into list of annotations each containing ID, segmentation, bounding box, score and
|
||||
area.
|
||||
"""
|
||||
annotations = []
|
||||
n = len(result.masks.data) if result.masks is not None else 0
|
||||
for i in range(n):
|
||||
mask = result.masks.data[i] == 1.0
|
||||
if torch.sum(mask) >= filter:
|
||||
annotation = {
|
||||
'id': i,
|
||||
'segmentation': mask.cpu().numpy(),
|
||||
'bbox': result.boxes.data[i],
|
||||
'score': result.boxes.conf[i]}
|
||||
annotation['area'] = annotation['segmentation'].sum()
|
||||
"id": i,
|
||||
"segmentation": mask.cpu().numpy(),
|
||||
"bbox": result.boxes.data[i],
|
||||
"score": result.boxes.conf[i],
|
||||
}
|
||||
annotation["area"] = annotation["segmentation"].sum()
|
||||
annotations.append(annotation)
|
||||
return annotations
|
||||
|
||||
@staticmethod
|
||||
def _get_bbox_from_mask(mask):
|
||||
"""Applies morphological transformations to the mask, displays it, and if with_contours is True, draws
|
||||
contours.
|
||||
"""
|
||||
mask = mask.astype(np.uint8)
|
||||
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
x1, y1, w, h = cv2.boundingRect(contours[0])
|
||||
@ -74,22 +93,38 @@ class FastSAMPrompt:
|
||||
y2 = max(y2, y_t + h_t)
|
||||
return [x1, y1, x2, y2]
|
||||
|
||||
def plot(self,
|
||||
annotations,
|
||||
output,
|
||||
bbox=None,
|
||||
points=None,
|
||||
point_label=None,
|
||||
mask_random_color=True,
|
||||
better_quality=True,
|
||||
retina=False,
|
||||
with_contours=True):
|
||||
def plot(
|
||||
self,
|
||||
annotations,
|
||||
output,
|
||||
bbox=None,
|
||||
points=None,
|
||||
point_label=None,
|
||||
mask_random_color=True,
|
||||
better_quality=True,
|
||||
retina=False,
|
||||
with_contours=True,
|
||||
):
|
||||
"""
|
||||
Plots annotations, bounding boxes, and points on images and saves the output.
|
||||
|
||||
Args:
|
||||
annotations (list): Annotations to be plotted.
|
||||
output (str or Path): Output directory for saving the plots.
|
||||
bbox (list, optional): Bounding box coordinates [x1, y1, x2, y2]. Defaults to None.
|
||||
points (list, optional): Points to be plotted. Defaults to None.
|
||||
point_label (list, optional): Labels for the points. Defaults to None.
|
||||
mask_random_color (bool, optional): Whether to use random color for masks. Defaults to True.
|
||||
better_quality (bool, optional): Whether to apply morphological transformations for better mask quality. Defaults to True.
|
||||
retina (bool, optional): Whether to use retina mask. Defaults to False.
|
||||
with_contours (bool, optional): Whether to plot contours. Defaults to True.
|
||||
"""
|
||||
pbar = TQDM(annotations, total=len(annotations))
|
||||
for ann in pbar:
|
||||
result_name = os.path.basename(ann.path)
|
||||
image = ann.orig_img
|
||||
image = ann.orig_img[..., ::-1] # BGR to RGB
|
||||
original_h, original_w = ann.orig_shape
|
||||
# for macOS only
|
||||
# For macOS only
|
||||
# plt.switch_backend('TkAgg')
|
||||
plt.figure(figsize=(original_w / 100, original_h / 100))
|
||||
# Add subplot with no margin.
|
||||
@ -134,19 +169,13 @@ class FastSAMPrompt:
|
||||
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
||||
plt.imshow(contour_mask)
|
||||
|
||||
plt.axis('off')
|
||||
fig = plt.gcf()
|
||||
|
||||
# Check if the canvas has been drawn
|
||||
if fig.canvas.get_renderer() is None: # macOS requires this or tests fail
|
||||
fig.canvas.draw()
|
||||
|
||||
# Save the figure
|
||||
save_path = Path(output) / result_name
|
||||
save_path.parent.mkdir(exist_ok=True, parents=True)
|
||||
image = Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
|
||||
image.save(save_path)
|
||||
plt.axis("off")
|
||||
plt.savefig(save_path, bbox_inches="tight", pad_inches=0, transparent=True)
|
||||
plt.close()
|
||||
pbar.set_description(f'Saving {result_name} to {save_path}')
|
||||
pbar.set_description(f"Saving {result_name} to {save_path}")
|
||||
|
||||
@staticmethod
|
||||
def fast_show_mask(
|
||||
@ -160,6 +189,20 @@ class FastSAMPrompt:
|
||||
target_height=960,
|
||||
target_width=960,
|
||||
):
|
||||
"""
|
||||
Quickly shows the mask annotations on the given matplotlib axis.
|
||||
|
||||
Args:
|
||||
annotation (array-like): Mask annotation.
|
||||
ax (matplotlib.axes.Axes): Matplotlib axis.
|
||||
random_color (bool, optional): Whether to use random color for masks. Defaults to False.
|
||||
bbox (list, optional): Bounding box coordinates [x1, y1, x2, y2]. Defaults to None.
|
||||
points (list, optional): Points to be plotted. Defaults to None.
|
||||
pointlabel (list, optional): Labels for the points. Defaults to None.
|
||||
retinamask (bool, optional): Whether to use retina mask. Defaults to True.
|
||||
target_height (int, optional): Target height for resizing. Defaults to 960.
|
||||
target_width (int, optional): Target width for resizing. Defaults to 960.
|
||||
"""
|
||||
n, h, w = annotation.shape # batch, height, width
|
||||
|
||||
areas = np.sum(annotation, axis=(1, 2))
|
||||
@ -175,26 +218,26 @@ class FastSAMPrompt:
|
||||
mask_image = np.expand_dims(annotation, -1) * visual
|
||||
|
||||
show = np.zeros((h, w, 4))
|
||||
h_indices, w_indices = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
|
||||
h_indices, w_indices = np.meshgrid(np.arange(h), np.arange(w), indexing="ij")
|
||||
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
||||
|
||||
show[h_indices, w_indices, :] = mask_image[indices]
|
||||
if bbox is not None:
|
||||
x1, y1, x2, y2 = bbox
|
||||
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
||||
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1))
|
||||
# Draw point
|
||||
if points is not None:
|
||||
plt.scatter(
|
||||
[point[0] for i, point in enumerate(points) if pointlabel[i] == 1],
|
||||
[point[1] for i, point in enumerate(points) if pointlabel[i] == 1],
|
||||
s=20,
|
||||
c='y',
|
||||
c="y",
|
||||
)
|
||||
plt.scatter(
|
||||
[point[0] for i, point in enumerate(points) if pointlabel[i] == 0],
|
||||
[point[1] for i, point in enumerate(points) if pointlabel[i] == 0],
|
||||
s=20,
|
||||
c='m',
|
||||
c="m",
|
||||
)
|
||||
|
||||
if not retinamask:
|
||||
@ -203,6 +246,7 @@ class FastSAMPrompt:
|
||||
|
||||
@torch.no_grad()
|
||||
def retrieve(self, model, preprocess, elements, search_text: str, device) -> int:
|
||||
"""Processes images and text with a model, calculates similarity, and returns softmax score."""
|
||||
preprocessed_images = [preprocess(image).to(device) for image in elements]
|
||||
tokenized_text = self.clip.tokenize([search_text]).to(device)
|
||||
stacked_images = torch.stack(preprocessed_images)
|
||||
@ -214,12 +258,13 @@ class FastSAMPrompt:
|
||||
return probs[:, 0].softmax(dim=0)
|
||||
|
||||
def _crop_image(self, format_results):
|
||||
"""Crops an image based on provided annotation format and returns cropped images and related data."""
|
||||
if os.path.isdir(self.source):
|
||||
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")
|
||||
image = Image.fromarray(cv2.cvtColor(self.results[0].orig_img, cv2.COLOR_BGR2RGB))
|
||||
ori_w, ori_h = image.size
|
||||
annotations = format_results
|
||||
mask_h, mask_w = annotations[0]['segmentation'].shape
|
||||
mask_h, mask_w = annotations[0]["segmentation"].shape
|
||||
if ori_w != mask_w or ori_h != mask_h:
|
||||
image = image.resize((mask_w, mask_h))
|
||||
cropped_boxes = []
|
||||
@ -227,18 +272,19 @@ class FastSAMPrompt:
|
||||
not_crop = []
|
||||
filter_id = []
|
||||
for _, mask in enumerate(annotations):
|
||||
if np.sum(mask['segmentation']) <= 100:
|
||||
if np.sum(mask["segmentation"]) <= 100:
|
||||
filter_id.append(_)
|
||||
continue
|
||||
bbox = self._get_bbox_from_mask(mask['segmentation']) # mask 的 bbox
|
||||
cropped_boxes.append(self._segment_image(image, bbox)) # 保存裁剪的图片
|
||||
cropped_images.append(bbox) # 保存裁剪的图片的bbox
|
||||
bbox = self._get_bbox_from_mask(mask["segmentation"]) # bbox from mask
|
||||
cropped_boxes.append(self._segment_image(image, bbox)) # save cropped image
|
||||
cropped_images.append(bbox) # save cropped image bbox
|
||||
|
||||
return cropped_boxes, cropped_images, not_crop, filter_id, annotations
|
||||
|
||||
def box_prompt(self, bbox):
|
||||
"""Modifies the bounding box properties and calculates IoU between masks and bounding box."""
|
||||
if self.results[0].masks is not None:
|
||||
assert (bbox[2] != 0 and bbox[3] != 0)
|
||||
assert bbox[2] != 0 and bbox[3] != 0
|
||||
if os.path.isdir(self.source):
|
||||
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")
|
||||
masks = self.results[0].masks.data
|
||||
@ -250,7 +296,8 @@ class FastSAMPrompt:
|
||||
int(bbox[0] * w / target_width),
|
||||
int(bbox[1] * h / target_height),
|
||||
int(bbox[2] * w / target_width),
|
||||
int(bbox[3] * h / target_height), ]
|
||||
int(bbox[3] * h / target_height),
|
||||
]
|
||||
bbox[0] = max(round(bbox[0]), 0)
|
||||
bbox[1] = max(round(bbox[1]), 0)
|
||||
bbox[2] = min(round(bbox[2]), w)
|
||||
@ -259,29 +306,30 @@ class FastSAMPrompt:
|
||||
# IoUs = torch.zeros(len(masks), dtype=torch.float32)
|
||||
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
|
||||
|
||||
masks_area = torch.sum(masks[:, bbox[1]:bbox[3], bbox[0]:bbox[2]], dim=(1, 2))
|
||||
masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2))
|
||||
orig_masks_area = torch.sum(masks, dim=(1, 2))
|
||||
|
||||
union = bbox_area + orig_masks_area - masks_area
|
||||
IoUs = masks_area / union
|
||||
max_iou_index = torch.argmax(IoUs)
|
||||
iou = masks_area / union
|
||||
max_iou_index = torch.argmax(iou)
|
||||
|
||||
self.results[0].masks.data = torch.tensor(np.array([masks[max_iou_index].cpu().numpy()]))
|
||||
return self.results
|
||||
|
||||
def point_prompt(self, points, pointlabel): # numpy 处理
|
||||
def point_prompt(self, points, pointlabel): # numpy
|
||||
"""Adjusts points on detected masks based on user input and returns the modified results."""
|
||||
if self.results[0].masks is not None:
|
||||
if os.path.isdir(self.source):
|
||||
raise ValueError(f"'{self.source}' is a directory, not a valid source for this function.")
|
||||
masks = self._format_results(self.results[0], 0)
|
||||
target_height, target_width = self.results[0].orig_shape
|
||||
h = masks[0]['segmentation'].shape[0]
|
||||
w = masks[0]['segmentation'].shape[1]
|
||||
h = masks[0]["segmentation"].shape[0]
|
||||
w = masks[0]["segmentation"].shape[1]
|
||||
if h != target_height or w != target_width:
|
||||
points = [[int(point[0] * w / target_width), int(point[1] * h / target_height)] for point in points]
|
||||
onemask = np.zeros((h, w))
|
||||
for annotation in masks:
|
||||
mask = annotation['segmentation'] if isinstance(annotation, dict) else annotation
|
||||
mask = annotation["segmentation"] if isinstance(annotation, dict) else annotation
|
||||
for i, point in enumerate(points):
|
||||
if mask[point[1], point[0]] == 1 and pointlabel[i] == 1:
|
||||
onemask += mask
|
||||
@ -292,16 +340,18 @@ class FastSAMPrompt:
|
||||
return self.results
|
||||
|
||||
def text_prompt(self, text):
|
||||
"""Processes a text prompt, applies it to existing results and returns the updated results."""
|
||||
if self.results[0].masks is not None:
|
||||
format_results = self._format_results(self.results[0], 0)
|
||||
cropped_boxes, cropped_images, not_crop, filter_id, annotations = self._crop_image(format_results)
|
||||
clip_model, preprocess = self.clip.load('ViT-B/32', device=self.device)
|
||||
clip_model, preprocess = self.clip.load("ViT-B/32", device=self.device)
|
||||
scores = self.retrieve(clip_model, preprocess, cropped_boxes, text, device=self.device)
|
||||
max_idx = scores.argsort()
|
||||
max_idx = max_idx[-1]
|
||||
max_idx += sum(np.array(filter_id) <= int(max_idx))
|
||||
self.results[0].masks.data = torch.tensor(np.array([ann['segmentation'] for ann in annotations]))
|
||||
self.results[0].masks.data = torch.tensor(np.array([annotations[max_idx]["segmentation"]]))
|
||||
return self.results
|
||||
|
||||
def everything_prompt(self):
|
||||
"""Returns the processed results from the previous methods in the class."""
|
||||
return self.results
|
||||
|
Reference in New Issue
Block a user