add yolo v10 and modify pipeline
This commit is contained in:
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Ultralytics Results, Boxes and Masks classes for handling inference results
|
||||
Ultralytics Results, Boxes and Masks classes for handling inference results.
|
||||
|
||||
Usage: See https://docs.ultralytics.com/modes/predict/
|
||||
"""
|
||||
@ -13,17 +13,17 @@ import numpy as np
|
||||
import torch
|
||||
|
||||
from ultralytics.data.augment import LetterBox
|
||||
from ultralytics.utils import LOGGER, SimpleClass, deprecation_warn, ops
|
||||
from ultralytics.utils import LOGGER, SimpleClass, ops
|
||||
from ultralytics.utils.plotting import Annotator, colors, save_one_box
|
||||
from ultralytics.utils.torch_utils import smart_inference_mode
|
||||
|
||||
|
||||
class BaseTensor(SimpleClass):
|
||||
"""
|
||||
Base tensor class with additional methods for easy manipulation and device handling.
|
||||
"""
|
||||
"""Base tensor class with additional methods for easy manipulation and device handling."""
|
||||
|
||||
def __init__(self, data, orig_shape) -> None:
|
||||
"""Initialize BaseTensor with data and original shape.
|
||||
"""
|
||||
Initialize BaseTensor with data and original shape.
|
||||
|
||||
Args:
|
||||
data (torch.Tensor | np.ndarray): Predictions, such as bboxes, masks and keypoints.
|
||||
@ -67,45 +67,63 @@ class Results(SimpleClass):
|
||||
"""
|
||||
A class for storing and manipulating inference results.
|
||||
|
||||
Args:
|
||||
orig_img (numpy.ndarray): The original image as a numpy array.
|
||||
path (str): The path to the image file.
|
||||
names (dict): A dictionary of class names.
|
||||
boxes (torch.tensor, optional): A 2D tensor of bounding box coordinates for each detection.
|
||||
masks (torch.tensor, optional): A 3D tensor of detection masks, where each mask is a binary image.
|
||||
probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task.
|
||||
keypoints (List[List[float]], optional): A list of detected keypoints for each object.
|
||||
|
||||
Attributes:
|
||||
orig_img (numpy.ndarray): The original image as a numpy array.
|
||||
orig_shape (tuple): The original image shape in (height, width) format.
|
||||
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
|
||||
masks (Masks, optional): A Masks object containing the detection masks.
|
||||
probs (Probs, optional): A Probs object containing probabilities of each class for classification task.
|
||||
keypoints (Keypoints, optional): A Keypoints object containing detected keypoints for each object.
|
||||
speed (dict): A dictionary of preprocess, inference, and postprocess speeds in milliseconds per image.
|
||||
names (dict): A dictionary of class names.
|
||||
path (str): The path to the image file.
|
||||
_keys (tuple): A tuple of attribute names for non-empty attributes.
|
||||
orig_img (numpy.ndarray): Original image as a numpy array.
|
||||
orig_shape (tuple): Original image shape in (height, width) format.
|
||||
boxes (Boxes, optional): Object containing detection bounding boxes.
|
||||
masks (Masks, optional): Object containing detection masks.
|
||||
probs (Probs, optional): Object containing class probabilities for classification tasks.
|
||||
keypoints (Keypoints, optional): Object containing detected keypoints for each object.
|
||||
speed (dict): Dictionary of preprocess, inference, and postprocess speeds (ms/image).
|
||||
names (dict): Dictionary of class names.
|
||||
path (str): Path to the image file.
|
||||
|
||||
Methods:
|
||||
update(boxes=None, masks=None, probs=None, obb=None): Updates object attributes with new detection results.
|
||||
cpu(): Returns a copy of the Results object with all tensors on CPU memory.
|
||||
numpy(): Returns a copy of the Results object with all tensors as numpy arrays.
|
||||
cuda(): Returns a copy of the Results object with all tensors on GPU memory.
|
||||
to(*args, **kwargs): Returns a copy of the Results object with tensors on a specified device and dtype.
|
||||
new(): Returns a new Results object with the same image, path, and names.
|
||||
plot(...): Plots detection results on an input image, returning an annotated image.
|
||||
show(): Show annotated results to screen.
|
||||
save(filename): Save annotated results to file.
|
||||
verbose(): Returns a log string for each task, detailing detections and classifications.
|
||||
save_txt(txt_file, save_conf=False): Saves detection results to a text file.
|
||||
save_crop(save_dir, file_name=Path("im.jpg")): Saves cropped detection images.
|
||||
tojson(normalize=False): Converts detection results to JSON format.
|
||||
"""
|
||||
|
||||
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None) -> None:
|
||||
"""Initialize the Results class."""
|
||||
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None, obb=None) -> None:
|
||||
"""
|
||||
Initialize the Results class.
|
||||
|
||||
Args:
|
||||
orig_img (numpy.ndarray): The original image as a numpy array.
|
||||
path (str): The path to the image file.
|
||||
names (dict): A dictionary of class names.
|
||||
boxes (torch.tensor, optional): A 2D tensor of bounding box coordinates for each detection.
|
||||
masks (torch.tensor, optional): A 3D tensor of detection masks, where each mask is a binary image.
|
||||
probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task.
|
||||
keypoints (torch.tensor, optional): A 2D tensor of keypoint coordinates for each detection.
|
||||
obb (torch.tensor, optional): A 2D tensor of oriented bounding box coordinates for each detection.
|
||||
"""
|
||||
self.orig_img = orig_img
|
||||
self.orig_shape = orig_img.shape[:2]
|
||||
self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes
|
||||
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks
|
||||
self.probs = Probs(probs) if probs is not None else None
|
||||
self.keypoints = Keypoints(keypoints, self.orig_shape) if keypoints is not None else None
|
||||
self.speed = {'preprocess': None, 'inference': None, 'postprocess': None} # milliseconds per image
|
||||
self.obb = OBB(obb, self.orig_shape) if obb is not None else None
|
||||
self.speed = {"preprocess": None, "inference": None, "postprocess": None} # milliseconds per image
|
||||
self.names = names
|
||||
self.path = path
|
||||
self.save_dir = None
|
||||
self._keys = 'boxes', 'masks', 'probs', 'keypoints'
|
||||
self._keys = "boxes", "masks", "probs", "keypoints", "obb"
|
||||
|
||||
def __getitem__(self, idx):
|
||||
"""Return a Results object for the specified index."""
|
||||
return self._apply('__getitem__', idx)
|
||||
return self._apply("__getitem__", idx)
|
||||
|
||||
def __len__(self):
|
||||
"""Return the number of detections in the Results object."""
|
||||
@ -114,17 +132,30 @@ class Results(SimpleClass):
|
||||
if v is not None:
|
||||
return len(v)
|
||||
|
||||
def update(self, boxes=None, masks=None, probs=None):
|
||||
def update(self, boxes=None, masks=None, probs=None, obb=None):
|
||||
"""Update the boxes, masks, and probs attributes of the Results object."""
|
||||
if boxes is not None:
|
||||
ops.clip_boxes(boxes, self.orig_shape) # clip boxes
|
||||
self.boxes = Boxes(boxes, self.orig_shape)
|
||||
self.boxes = Boxes(ops.clip_boxes(boxes, self.orig_shape), self.orig_shape)
|
||||
if masks is not None:
|
||||
self.masks = Masks(masks, self.orig_shape)
|
||||
if probs is not None:
|
||||
self.probs = probs
|
||||
if obb is not None:
|
||||
self.obb = OBB(obb, self.orig_shape)
|
||||
|
||||
def _apply(self, fn, *args, **kwargs):
|
||||
"""
|
||||
Applies a function to all non-empty attributes and returns a new Results object with modified attributes. This
|
||||
function is internally called by methods like .to(), .cuda(), .cpu(), etc.
|
||||
|
||||
Args:
|
||||
fn (str): The name of the function to apply.
|
||||
*args: Variable length argument list to pass to the function.
|
||||
**kwargs: Arbitrary keyword arguments to pass to the function.
|
||||
|
||||
Returns:
|
||||
Results: A new Results object with attributes modified by the applied function.
|
||||
"""
|
||||
r = self.new()
|
||||
for k in self._keys:
|
||||
v = getattr(self, k)
|
||||
@ -134,40 +165,42 @@ class Results(SimpleClass):
|
||||
|
||||
def cpu(self):
|
||||
"""Return a copy of the Results object with all tensors on CPU memory."""
|
||||
return self._apply('cpu')
|
||||
return self._apply("cpu")
|
||||
|
||||
def numpy(self):
|
||||
"""Return a copy of the Results object with all tensors as numpy arrays."""
|
||||
return self._apply('numpy')
|
||||
return self._apply("numpy")
|
||||
|
||||
def cuda(self):
|
||||
"""Return a copy of the Results object with all tensors on GPU memory."""
|
||||
return self._apply('cuda')
|
||||
return self._apply("cuda")
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
"""Return a copy of the Results object with tensors on the specified device and dtype."""
|
||||
return self._apply('to', *args, **kwargs)
|
||||
return self._apply("to", *args, **kwargs)
|
||||
|
||||
def new(self):
|
||||
"""Return a new Results object with the same image, path, and names."""
|
||||
return Results(orig_img=self.orig_img, path=self.path, names=self.names)
|
||||
|
||||
def plot(
|
||||
self,
|
||||
conf=True,
|
||||
line_width=None,
|
||||
font_size=None,
|
||||
font='Arial.ttf',
|
||||
pil=False,
|
||||
img=None,
|
||||
im_gpu=None,
|
||||
kpt_radius=5,
|
||||
kpt_line=True,
|
||||
labels=True,
|
||||
boxes=True,
|
||||
masks=True,
|
||||
probs=True,
|
||||
**kwargs # deprecated args TODO: remove support in 8.2
|
||||
self,
|
||||
conf=True,
|
||||
line_width=None,
|
||||
font_size=None,
|
||||
font="Arial.ttf",
|
||||
pil=False,
|
||||
img=None,
|
||||
im_gpu=None,
|
||||
kpt_radius=5,
|
||||
kpt_line=True,
|
||||
labels=True,
|
||||
boxes=True,
|
||||
masks=True,
|
||||
probs=True,
|
||||
show=False,
|
||||
save=False,
|
||||
filename=None,
|
||||
):
|
||||
"""
|
||||
Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image.
|
||||
@ -186,6 +219,9 @@ class Results(SimpleClass):
|
||||
boxes (bool): Whether to plot the bounding boxes.
|
||||
masks (bool): Whether to plot the masks.
|
||||
probs (bool): Whether to plot classification probability
|
||||
show (bool): Whether to display the annotated image directly.
|
||||
save (bool): Whether to save the annotated image to `filename`.
|
||||
filename (str): Filename to save image to if save is True.
|
||||
|
||||
Returns:
|
||||
(numpy.ndarray): A numpy array of the annotated image.
|
||||
@ -207,19 +243,9 @@ class Results(SimpleClass):
|
||||
if img is None and isinstance(self.orig_img, torch.Tensor):
|
||||
img = (self.orig_img[0].detach().permute(1, 2, 0).contiguous() * 255).to(torch.uint8).cpu().numpy()
|
||||
|
||||
# Deprecation warn TODO: remove in 8.2
|
||||
if 'show_conf' in kwargs:
|
||||
deprecation_warn('show_conf', 'conf')
|
||||
conf = kwargs['show_conf']
|
||||
assert isinstance(conf, bool), '`show_conf` should be of boolean type, i.e, show_conf=True/False'
|
||||
|
||||
if 'line_thickness' in kwargs:
|
||||
deprecation_warn('line_thickness', 'line_width')
|
||||
line_width = kwargs['line_thickness']
|
||||
assert isinstance(line_width, int), '`line_width` should be of int type, i.e, line_width=3'
|
||||
|
||||
names = self.names
|
||||
pred_boxes, show_boxes = self.boxes, boxes
|
||||
is_obb = self.obb is not None
|
||||
pred_boxes, show_boxes = self.obb if is_obb else self.boxes, boxes
|
||||
pred_masks, show_masks = self.masks, masks
|
||||
pred_probs, show_probs = self.probs, probs
|
||||
annotator = Annotator(
|
||||
@ -228,28 +254,35 @@ class Results(SimpleClass):
|
||||
font_size,
|
||||
font,
|
||||
pil or (pred_probs is not None and show_probs), # Classify tasks default to pil=True
|
||||
example=names)
|
||||
example=names,
|
||||
)
|
||||
|
||||
# Plot Segment results
|
||||
if pred_masks and show_masks:
|
||||
if im_gpu is None:
|
||||
img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
|
||||
im_gpu = torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device).permute(
|
||||
2, 0, 1).flip(0).contiguous() / 255
|
||||
im_gpu = (
|
||||
torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device)
|
||||
.permute(2, 0, 1)
|
||||
.flip(0)
|
||||
.contiguous()
|
||||
/ 255
|
||||
)
|
||||
idx = pred_boxes.cls if pred_boxes else range(len(pred_masks))
|
||||
annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=im_gpu)
|
||||
|
||||
# Plot Detect results
|
||||
if pred_boxes and show_boxes:
|
||||
if pred_boxes is not None and show_boxes:
|
||||
for d in reversed(pred_boxes):
|
||||
c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item())
|
||||
name = ('' if id is None else f'id:{id} ') + names[c]
|
||||
label = (f'{name} {conf:.2f}' if conf else name) if labels else None
|
||||
annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True))
|
||||
name = ("" if id is None else f"id:{id} ") + names[c]
|
||||
label = (f"{name} {conf:.2f}" if conf else name) if labels else None
|
||||
box = d.xyxyxyxy.reshape(-1, 4, 2).squeeze() if is_obb else d.xyxy.squeeze()
|
||||
annotator.box_label(box, label, color=colors(c, True), rotated=is_obb)
|
||||
|
||||
# Plot Classify results
|
||||
if pred_probs is not None and show_probs:
|
||||
text = ',\n'.join(f'{names[j] if names else j} {pred_probs.data[j]:.2f}' for j in pred_probs.top5)
|
||||
text = ",\n".join(f"{names[j] if names else j} {pred_probs.data[j]:.2f}" for j in pred_probs.top5)
|
||||
x = round(self.orig_shape[0] * 0.03)
|
||||
annotator.text([x, x], text, txt_color=(255, 255, 255)) # TODO: allow setting colors
|
||||
|
||||
@ -258,17 +291,34 @@ class Results(SimpleClass):
|
||||
for k in reversed(self.keypoints.data):
|
||||
annotator.kpts(k, self.orig_shape, radius=kpt_radius, kpt_line=kpt_line)
|
||||
|
||||
# Show results
|
||||
if show:
|
||||
annotator.show(self.path)
|
||||
|
||||
# Save results
|
||||
if save:
|
||||
annotator.save(filename)
|
||||
|
||||
return annotator.result()
|
||||
|
||||
def show(self, *args, **kwargs):
|
||||
"""Show annotated results image."""
|
||||
self.plot(show=True, *args, **kwargs)
|
||||
|
||||
def save(self, filename=None, *args, **kwargs):
|
||||
"""Save annotated results image."""
|
||||
if not filename:
|
||||
filename = f"results_{Path(self.path).name}"
|
||||
self.plot(save=True, filename=filename, *args, **kwargs)
|
||||
return filename
|
||||
|
||||
def verbose(self):
|
||||
"""
|
||||
Return log string for each task.
|
||||
"""
|
||||
log_string = ''
|
||||
"""Return log string for each task."""
|
||||
log_string = ""
|
||||
probs = self.probs
|
||||
boxes = self.boxes
|
||||
if len(self) == 0:
|
||||
return log_string if probs is not None else f'{log_string}(no detections), '
|
||||
return log_string if probs is not None else f"{log_string}(no detections), "
|
||||
if probs is not None:
|
||||
log_string += f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, "
|
||||
if boxes:
|
||||
@ -285,34 +335,35 @@ class Results(SimpleClass):
|
||||
txt_file (str): txt file path.
|
||||
save_conf (bool): save confidence score or not.
|
||||
"""
|
||||
boxes = self.boxes
|
||||
is_obb = self.obb is not None
|
||||
boxes = self.obb if is_obb else self.boxes
|
||||
masks = self.masks
|
||||
probs = self.probs
|
||||
kpts = self.keypoints
|
||||
texts = []
|
||||
if probs is not None:
|
||||
# Classify
|
||||
[texts.append(f'{probs.data[j]:.2f} {self.names[j]}') for j in probs.top5]
|
||||
[texts.append(f"{probs.data[j]:.2f} {self.names[j]}") for j in probs.top5]
|
||||
elif boxes:
|
||||
# Detect/segment/pose
|
||||
for j, d in enumerate(boxes):
|
||||
c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item())
|
||||
line = (c, *d.xywhn.view(-1))
|
||||
line = (c, *(d.xyxyxyxyn.view(-1) if is_obb else d.xywhn.view(-1)))
|
||||
if masks:
|
||||
seg = masks[j].xyn[0].copy().reshape(-1) # reversed mask.xyn, (n,2) to (n*2)
|
||||
line = (c, *seg)
|
||||
if kpts is not None:
|
||||
kpt = torch.cat((kpts[j].xyn, kpts[j].conf[..., None]), 2) if kpts[j].has_visible else kpts[j].xyn
|
||||
line += (*kpt.reshape(-1).tolist(), )
|
||||
line += (conf, ) * save_conf + (() if id is None else (id, ))
|
||||
texts.append(('%g ' * len(line)).rstrip() % line)
|
||||
line += (*kpt.reshape(-1).tolist(),)
|
||||
line += (conf,) * save_conf + (() if id is None else (id,))
|
||||
texts.append(("%g " * len(line)).rstrip() % line)
|
||||
|
||||
if texts:
|
||||
Path(txt_file).parent.mkdir(parents=True, exist_ok=True) # make directory
|
||||
with open(txt_file, 'a') as f:
|
||||
f.writelines(text + '\n' for text in texts)
|
||||
with open(txt_file, "a") as f:
|
||||
f.writelines(text + "\n" for text in texts)
|
||||
|
||||
def save_crop(self, save_dir, file_name=Path('im.jpg')):
|
||||
def save_crop(self, save_dir, file_name=Path("im.jpg")):
|
||||
"""
|
||||
Save cropped predictions to `save_dir/cls/file_name.jpg`.
|
||||
|
||||
@ -321,79 +372,105 @@ class Results(SimpleClass):
|
||||
file_name (str | pathlib.Path): File name.
|
||||
"""
|
||||
if self.probs is not None:
|
||||
LOGGER.warning('WARNING ⚠️ Classify task do not support `save_crop`.')
|
||||
LOGGER.warning("WARNING ⚠️ Classify task do not support `save_crop`.")
|
||||
return
|
||||
if self.obb is not None:
|
||||
LOGGER.warning("WARNING ⚠️ OBB task do not support `save_crop`.")
|
||||
return
|
||||
for d in self.boxes:
|
||||
save_one_box(d.xyxy,
|
||||
self.orig_img.copy(),
|
||||
file=Path(save_dir) / self.names[int(d.cls)] / f'{Path(file_name).stem}.jpg',
|
||||
BGR=True)
|
||||
save_one_box(
|
||||
d.xyxy,
|
||||
self.orig_img.copy(),
|
||||
file=Path(save_dir) / self.names[int(d.cls)] / f"{Path(file_name)}.jpg",
|
||||
BGR=True,
|
||||
)
|
||||
|
||||
def tojson(self, normalize=False):
|
||||
"""Convert the object to JSON format."""
|
||||
def summary(self, normalize=False, decimals=5):
|
||||
"""Convert the results to a summarized format."""
|
||||
if self.probs is not None:
|
||||
LOGGER.warning('Warning: Classify task do not support `tojson` yet.')
|
||||
LOGGER.warning("Warning: Classify results do not support the `summary()` method yet.")
|
||||
return
|
||||
|
||||
import json
|
||||
|
||||
# Create list of detection dictionaries
|
||||
results = []
|
||||
data = self.boxes.data.cpu().tolist()
|
||||
h, w = self.orig_shape if normalize else (1, 1)
|
||||
for i, row in enumerate(data): # xyxy, track_id if tracking, conf, class_id
|
||||
box = {'x1': row[0] / w, 'y1': row[1] / h, 'x2': row[2] / w, 'y2': row[3] / h}
|
||||
conf = row[-2]
|
||||
box = {
|
||||
"x1": round(row[0] / w, decimals),
|
||||
"y1": round(row[1] / h, decimals),
|
||||
"x2": round(row[2] / w, decimals),
|
||||
"y2": round(row[3] / h, decimals),
|
||||
}
|
||||
conf = round(row[-2], decimals)
|
||||
class_id = int(row[-1])
|
||||
name = self.names[class_id]
|
||||
result = {'name': name, 'class': class_id, 'confidence': conf, 'box': box}
|
||||
result = {"name": self.names[class_id], "class": class_id, "confidence": conf, "box": box}
|
||||
if self.boxes.is_track:
|
||||
result['track_id'] = int(row[-3]) # track ID
|
||||
result["track_id"] = int(row[-3]) # track ID
|
||||
if self.masks:
|
||||
x, y = self.masks.xy[i][:, 0], self.masks.xy[i][:, 1] # numpy array
|
||||
result['segments'] = {'x': (x / w).tolist(), 'y': (y / h).tolist()}
|
||||
result["segments"] = {
|
||||
"x": (self.masks.xy[i][:, 0] / w).round(decimals).tolist(),
|
||||
"y": (self.masks.xy[i][:, 1] / h).round(decimals).tolist(),
|
||||
}
|
||||
if self.keypoints is not None:
|
||||
x, y, visible = self.keypoints[i].data[0].cpu().unbind(dim=1) # torch Tensor
|
||||
result['keypoints'] = {'x': (x / w).tolist(), 'y': (y / h).tolist(), 'visible': visible.tolist()}
|
||||
result["keypoints"] = {
|
||||
"x": (x / w).numpy().round(decimals).tolist(), # decimals named argument required
|
||||
"y": (y / h).numpy().round(decimals).tolist(),
|
||||
"visible": visible.numpy().round(decimals).tolist(),
|
||||
}
|
||||
results.append(result)
|
||||
|
||||
# Convert detections to JSON
|
||||
return json.dumps(results, indent=2)
|
||||
return results
|
||||
|
||||
def tojson(self, normalize=False, decimals=5):
|
||||
"""Convert the results to JSON format."""
|
||||
import json
|
||||
|
||||
return json.dumps(self.summary(normalize=normalize, decimals=decimals), indent=2)
|
||||
|
||||
|
||||
class Boxes(BaseTensor):
|
||||
"""
|
||||
A class for storing and manipulating detection boxes.
|
||||
|
||||
Args:
|
||||
boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes,
|
||||
with shape (num_boxes, 6) or (num_boxes, 7). The last two columns contain confidence and class values.
|
||||
If present, the third last column contains track IDs.
|
||||
orig_shape (tuple): Original image size, in the format (height, width).
|
||||
Manages detection boxes, providing easy access and manipulation of box coordinates, confidence scores, class
|
||||
identifiers, and optional tracking IDs. Supports multiple formats for box coordinates, including both absolute and
|
||||
normalized forms.
|
||||
|
||||
Attributes:
|
||||
xyxy (torch.Tensor | numpy.ndarray): The boxes in xyxy format.
|
||||
conf (torch.Tensor | numpy.ndarray): The confidence values of the boxes.
|
||||
cls (torch.Tensor | numpy.ndarray): The class values of the boxes.
|
||||
id (torch.Tensor | numpy.ndarray): The track IDs of the boxes (if available).
|
||||
xywh (torch.Tensor | numpy.ndarray): The boxes in xywh format.
|
||||
xyxyn (torch.Tensor | numpy.ndarray): The boxes in xyxy format normalized by original image size.
|
||||
xywhn (torch.Tensor | numpy.ndarray): The boxes in xywh format normalized by original image size.
|
||||
data (torch.Tensor): The raw bboxes tensor (alias for `boxes`).
|
||||
data (torch.Tensor): The raw tensor containing detection boxes and their associated data.
|
||||
orig_shape (tuple): The original image size as a tuple (height, width), used for normalization.
|
||||
is_track (bool): Indicates whether tracking IDs are included in the box data.
|
||||
|
||||
Properties:
|
||||
xyxy (torch.Tensor | numpy.ndarray): Boxes in [x1, y1, x2, y2] format.
|
||||
conf (torch.Tensor | numpy.ndarray): Confidence scores for each box.
|
||||
cls (torch.Tensor | numpy.ndarray): Class labels for each box.
|
||||
id (torch.Tensor | numpy.ndarray, optional): Tracking IDs for each box, if available.
|
||||
xywh (torch.Tensor | numpy.ndarray): Boxes in [x, y, width, height] format, calculated on demand.
|
||||
xyxyn (torch.Tensor | numpy.ndarray): Normalized [x1, y1, x2, y2] boxes, relative to `orig_shape`.
|
||||
xywhn (torch.Tensor | numpy.ndarray): Normalized [x, y, width, height] boxes, relative to `orig_shape`.
|
||||
|
||||
Methods:
|
||||
cpu(): Move the object to CPU memory.
|
||||
numpy(): Convert the object to a numpy array.
|
||||
cuda(): Move the object to CUDA memory.
|
||||
to(*args, **kwargs): Move the object to the specified device.
|
||||
cpu(): Moves the boxes to CPU memory.
|
||||
numpy(): Converts the boxes to a numpy array format.
|
||||
cuda(): Moves the boxes to CUDA (GPU) memory.
|
||||
to(device, dtype=None): Moves the boxes to the specified device.
|
||||
"""
|
||||
|
||||
def __init__(self, boxes, orig_shape) -> None:
|
||||
"""Initialize the Boxes class."""
|
||||
"""
|
||||
Initialize the Boxes class.
|
||||
|
||||
Args:
|
||||
boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes, with
|
||||
shape (num_boxes, 6) or (num_boxes, 7). The last two columns contain confidence and class values.
|
||||
If present, the third last column contains track IDs.
|
||||
orig_shape (tuple): Original image size, in the format (height, width).
|
||||
"""
|
||||
if boxes.ndim == 1:
|
||||
boxes = boxes[None, :]
|
||||
n = boxes.shape[-1]
|
||||
assert n in (6, 7), f'expected `n` in [6, 7], but got {n}' # xyxy, track_id, conf, cls
|
||||
assert n in (6, 7), f"expected 6 or 7 values but got {n}" # xyxy, track_id, conf, cls
|
||||
super().__init__(boxes, orig_shape)
|
||||
self.is_track = n == 7
|
||||
self.orig_shape = orig_shape
|
||||
@ -442,19 +519,12 @@ class Boxes(BaseTensor):
|
||||
xywh[..., [1, 3]] /= self.orig_shape[0]
|
||||
return xywh
|
||||
|
||||
@property
|
||||
def boxes(self):
|
||||
"""Return the raw bboxes tensor (deprecated)."""
|
||||
LOGGER.warning("WARNING ⚠️ 'Boxes.boxes' is deprecated. Use 'Boxes.data' instead.")
|
||||
return self.data
|
||||
|
||||
|
||||
class Masks(BaseTensor):
|
||||
"""
|
||||
A class for storing and manipulating detection masks.
|
||||
|
||||
Attributes:
|
||||
segments (list): Deprecated property for segments (normalized).
|
||||
xy (list): A list of segments in pixel coordinates.
|
||||
xyn (list): A list of normalized segments.
|
||||
|
||||
@ -471,22 +541,14 @@ class Masks(BaseTensor):
|
||||
masks = masks[None, :]
|
||||
super().__init__(masks, orig_shape)
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=1)
|
||||
def segments(self):
|
||||
"""Return segments (normalized). Deprecated; use xyn property instead."""
|
||||
LOGGER.warning(
|
||||
"WARNING ⚠️ 'Masks.segments' is deprecated. Use 'Masks.xyn' for segments (normalized) and 'Masks.xy' for segments (pixels) instead."
|
||||
)
|
||||
return self.xyn
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=1)
|
||||
def xyn(self):
|
||||
"""Return normalized segments."""
|
||||
return [
|
||||
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=True)
|
||||
for x in ops.masks2segments(self.data)]
|
||||
for x in ops.masks2segments(self.data)
|
||||
]
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=1)
|
||||
@ -494,13 +556,8 @@ class Masks(BaseTensor):
|
||||
"""Return segments in pixel coordinates."""
|
||||
return [
|
||||
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=False)
|
||||
for x in ops.masks2segments(self.data)]
|
||||
|
||||
@property
|
||||
def masks(self):
|
||||
"""Return the raw masks tensor. Deprecated; use data attribute instead."""
|
||||
LOGGER.warning("WARNING ⚠️ 'Masks.masks' is deprecated. Use 'Masks.data' instead.")
|
||||
return self.data
|
||||
for x in ops.masks2segments(self.data)
|
||||
]
|
||||
|
||||
|
||||
class Keypoints(BaseTensor):
|
||||
@ -519,10 +576,14 @@ class Keypoints(BaseTensor):
|
||||
to(device, dtype): Returns a copy of the keypoints tensor with the specified device and dtype.
|
||||
"""
|
||||
|
||||
@smart_inference_mode() # avoid keypoints < conf in-place error
|
||||
def __init__(self, keypoints, orig_shape) -> None:
|
||||
"""Initializes the Keypoints object with detection keypoints and original image size."""
|
||||
if keypoints.ndim == 2:
|
||||
keypoints = keypoints[None, :]
|
||||
if keypoints.shape[2] == 3: # x, y, conf
|
||||
mask = keypoints[..., 2] < 0.5 # points with conf < 0.5 (not visible)
|
||||
keypoints[..., :2][mask] = 0
|
||||
super().__init__(keypoints, orig_shape)
|
||||
self.has_visible = self.data.shape[-1] == 3
|
||||
|
||||
@ -566,6 +627,7 @@ class Probs(BaseTensor):
|
||||
"""
|
||||
|
||||
def __init__(self, probs, orig_shape=None) -> None:
|
||||
"""Initialize the Probs class with classification probabilities and optional original shape of the image."""
|
||||
super().__init__(probs, orig_shape)
|
||||
|
||||
@property
|
||||
@ -591,3 +653,91 @@ class Probs(BaseTensor):
|
||||
def top5conf(self):
|
||||
"""Return the confidences of top 5."""
|
||||
return self.data[self.top5]
|
||||
|
||||
|
||||
class OBB(BaseTensor):
|
||||
"""
|
||||
A class for storing and manipulating Oriented Bounding Boxes (OBB).
|
||||
|
||||
Args:
|
||||
boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes,
|
||||
with shape (num_boxes, 7) or (num_boxes, 8). The last two columns contain confidence and class values.
|
||||
If present, the third last column contains track IDs, and the fifth column from the left contains rotation.
|
||||
orig_shape (tuple): Original image size, in the format (height, width).
|
||||
|
||||
Attributes:
|
||||
xywhr (torch.Tensor | numpy.ndarray): The boxes in [x_center, y_center, width, height, rotation] format.
|
||||
conf (torch.Tensor | numpy.ndarray): The confidence values of the boxes.
|
||||
cls (torch.Tensor | numpy.ndarray): The class values of the boxes.
|
||||
id (torch.Tensor | numpy.ndarray): The track IDs of the boxes (if available).
|
||||
xyxyxyxyn (torch.Tensor | numpy.ndarray): The rotated boxes in xyxyxyxy format normalized by orig image size.
|
||||
xyxyxyxy (torch.Tensor | numpy.ndarray): The rotated boxes in xyxyxyxy format.
|
||||
xyxy (torch.Tensor | numpy.ndarray): The horizontal boxes in xyxyxyxy format.
|
||||
data (torch.Tensor): The raw OBB tensor (alias for `boxes`).
|
||||
|
||||
Methods:
|
||||
cpu(): Move the object to CPU memory.
|
||||
numpy(): Convert the object to a numpy array.
|
||||
cuda(): Move the object to CUDA memory.
|
||||
to(*args, **kwargs): Move the object to the specified device.
|
||||
"""
|
||||
|
||||
def __init__(self, boxes, orig_shape) -> None:
|
||||
"""Initialize the Boxes class."""
|
||||
if boxes.ndim == 1:
|
||||
boxes = boxes[None, :]
|
||||
n = boxes.shape[-1]
|
||||
assert n in (7, 8), f"expected 7 or 8 values but got {n}" # xywh, rotation, track_id, conf, cls
|
||||
super().__init__(boxes, orig_shape)
|
||||
self.is_track = n == 8
|
||||
self.orig_shape = orig_shape
|
||||
|
||||
@property
|
||||
def xywhr(self):
|
||||
"""Return the rotated boxes in xywhr format."""
|
||||
return self.data[:, :5]
|
||||
|
||||
@property
|
||||
def conf(self):
|
||||
"""Return the confidence values of the boxes."""
|
||||
return self.data[:, -2]
|
||||
|
||||
@property
|
||||
def cls(self):
|
||||
"""Return the class values of the boxes."""
|
||||
return self.data[:, -1]
|
||||
|
||||
@property
|
||||
def id(self):
|
||||
"""Return the track IDs of the boxes (if available)."""
|
||||
return self.data[:, -3] if self.is_track else None
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=2)
|
||||
def xyxyxyxy(self):
|
||||
"""Return the boxes in xyxyxyxy format, (N, 4, 2)."""
|
||||
return ops.xywhr2xyxyxyxy(self.xywhr)
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=2)
|
||||
def xyxyxyxyn(self):
|
||||
"""Return the boxes in xyxyxyxy format, (N, 4, 2)."""
|
||||
xyxyxyxyn = self.xyxyxyxy.clone() if isinstance(self.xyxyxyxy, torch.Tensor) else np.copy(self.xyxyxyxy)
|
||||
xyxyxyxyn[..., 0] /= self.orig_shape[1]
|
||||
xyxyxyxyn[..., 1] /= self.orig_shape[0]
|
||||
return xyxyxyxyn
|
||||
|
||||
@property
|
||||
@lru_cache(maxsize=2)
|
||||
def xyxy(self):
|
||||
"""
|
||||
Return the horizontal boxes in xyxy format, (N, 4).
|
||||
|
||||
Accepts both torch and numpy boxes.
|
||||
"""
|
||||
x1 = self.xyxyxyxy[..., 0].min(1).values
|
||||
x2 = self.xyxyxyxy[..., 0].max(1).values
|
||||
y1 = self.xyxyxyxy[..., 1].min(1).values
|
||||
y2 = self.xyxyxyxy[..., 1].max(1).values
|
||||
xyxy = [x1, y1, x2, y2]
|
||||
return np.stack(xyxy, axis=-1) if isinstance(self.data, np.ndarray) else torch.stack(xyxy, dim=-1)
|
||||
|
Reference in New Issue
Block a user