add yolo v10 and modify pipeline
This commit is contained in:
@ -11,8 +11,8 @@ Usage - sources:
|
||||
list.txt # list of images
|
||||
list.streams # list of streams
|
||||
'path/*.jpg' # glob
|
||||
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
||||
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
||||
'https://youtu.be/LNwODJXcvt4' # YouTube
|
||||
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP, TCP stream
|
||||
|
||||
Usage - formats:
|
||||
$ yolo mode=predict model=yolov8n.pt # PyTorch
|
||||
@ -26,8 +26,12 @@ Usage - formats:
|
||||
yolov8n.tflite # TensorFlow Lite
|
||||
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
|
||||
yolov8n_paddle_model # PaddlePaddle
|
||||
yolov8n_ncnn_model # NCNN
|
||||
"""
|
||||
|
||||
import platform
|
||||
import re
|
||||
import threading
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
@ -58,7 +62,7 @@ Example:
|
||||
|
||||
class BasePredictor:
|
||||
"""
|
||||
BasePredictor
|
||||
BasePredictor.
|
||||
|
||||
A base class for creating predictors.
|
||||
|
||||
@ -70,9 +74,7 @@ class BasePredictor:
|
||||
data (dict): Data configuration.
|
||||
device (torch.device): Device used for prediction.
|
||||
dataset (Dataset): Dataset used for prediction.
|
||||
vid_path (str): Path to video file.
|
||||
vid_writer (cv2.VideoWriter): Video writer for saving video output.
|
||||
data_path (str): Path to data.
|
||||
vid_writer (dict): Dictionary of {save_path: video_writer, ...} writer for saving video output.
|
||||
"""
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
@ -97,19 +99,22 @@ class BasePredictor:
|
||||
self.imgsz = None
|
||||
self.device = None
|
||||
self.dataset = None
|
||||
self.vid_path, self.vid_writer = None, None
|
||||
self.vid_writer = {} # dict of {save_path: video_writer, ...}
|
||||
self.plotted_img = None
|
||||
self.data_path = None
|
||||
self.source_type = None
|
||||
self.seen = 0
|
||||
self.windows = []
|
||||
self.batch = None
|
||||
self.results = None
|
||||
self.transforms = None
|
||||
self.callbacks = _callbacks or callbacks.get_default_callbacks()
|
||||
self.txt_path = None
|
||||
self._lock = threading.Lock() # for automatic thread-safe inference
|
||||
callbacks.add_integration_callbacks(self)
|
||||
|
||||
def preprocess(self, im):
|
||||
"""Prepares input image before inference.
|
||||
"""
|
||||
Prepares input image before inference.
|
||||
|
||||
Args:
|
||||
im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list.
|
||||
@ -128,9 +133,13 @@ class BasePredictor:
|
||||
return im
|
||||
|
||||
def inference(self, im, *args, **kwargs):
|
||||
visualize = increment_path(self.save_dir / Path(self.batch[0][0]).stem,
|
||||
mkdir=True) if self.args.visualize and (not self.source_type.tensor) else False
|
||||
return self.model(im, augment=self.args.augment, visualize=visualize)
|
||||
"""Runs inference on a given image using the specified model and arguments."""
|
||||
visualize = (
|
||||
increment_path(self.save_dir / Path(self.batch[0][0]).stem, mkdir=True)
|
||||
if self.args.visualize and (not self.source_type.tensor)
|
||||
else False
|
||||
)
|
||||
return self.model(im, augment=self.args.augment, visualize=visualize, embed=self.args.embed, *args, **kwargs)
|
||||
|
||||
def pre_transform(self, im):
|
||||
"""
|
||||
@ -142,45 +151,10 @@ class BasePredictor:
|
||||
Returns:
|
||||
(list): A list of transformed images.
|
||||
"""
|
||||
same_shapes = all(x.shape == im[0].shape for x in im)
|
||||
same_shapes = len({x.shape for x in im}) == 1
|
||||
letterbox = LetterBox(self.imgsz, auto=same_shapes and self.model.pt, stride=self.model.stride)
|
||||
return [letterbox(image=x) for x in im]
|
||||
|
||||
def write_results(self, idx, results, batch):
|
||||
"""Write inference results to a file or directory."""
|
||||
p, im, _ = batch
|
||||
log_string = ''
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
if self.source_type.webcam or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1
|
||||
log_string += f'{idx}: '
|
||||
frame = self.dataset.count
|
||||
else:
|
||||
frame = getattr(self.dataset, 'frame', 0)
|
||||
self.data_path = p
|
||||
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
|
||||
log_string += '%gx%g ' % im.shape[2:] # print string
|
||||
result = results[idx]
|
||||
log_string += result.verbose()
|
||||
|
||||
if self.args.save or self.args.show: # Add bbox to image
|
||||
plot_args = {
|
||||
'line_width': self.args.line_width,
|
||||
'boxes': self.args.boxes,
|
||||
'conf': self.args.show_conf,
|
||||
'labels': self.args.show_labels}
|
||||
if not self.args.retina_masks:
|
||||
plot_args['im_gpu'] = im[idx]
|
||||
self.plotted_img = result.plot(**plot_args)
|
||||
# Write
|
||||
if self.args.save_txt:
|
||||
result.save_txt(f'{self.txt_path}.txt', save_conf=self.args.save_conf)
|
||||
if self.args.save_crop:
|
||||
result.save_crop(save_dir=self.save_dir / 'crops',
|
||||
file_name=self.data_path.stem + ('' if self.dataset.mode == 'image' else f'_{frame}'))
|
||||
|
||||
return log_string
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
"""Post-processes predictions for an image and returns them."""
|
||||
return preds
|
||||
@ -194,157 +168,224 @@ class BasePredictor:
|
||||
return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one
|
||||
|
||||
def predict_cli(self, source=None, model=None):
|
||||
"""Method used for CLI prediction. It uses always generator as outputs as not required by CLI mode."""
|
||||
"""
|
||||
Method used for CLI prediction.
|
||||
|
||||
It uses always generator as outputs as not required by CLI mode.
|
||||
"""
|
||||
gen = self.stream_inference(source, model)
|
||||
for _ in gen: # running CLI inference without accumulating any outputs (do not modify)
|
||||
for _ in gen: # noqa, running CLI inference without accumulating any outputs (do not modify)
|
||||
pass
|
||||
|
||||
def setup_source(self, source):
|
||||
"""Sets up source and inference mode."""
|
||||
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
|
||||
self.transforms = getattr(self.model.model, 'transforms', classify_transforms(
|
||||
self.imgsz[0])) if self.args.task == 'classify' else None
|
||||
self.dataset = load_inference_source(source=source,
|
||||
imgsz=self.imgsz,
|
||||
vid_stride=self.args.vid_stride,
|
||||
stream_buffer=self.args.stream_buffer)
|
||||
self.transforms = (
|
||||
getattr(
|
||||
self.model.model,
|
||||
"transforms",
|
||||
classify_transforms(self.imgsz[0], crop_fraction=self.args.crop_fraction),
|
||||
)
|
||||
if self.args.task == "classify"
|
||||
else None
|
||||
)
|
||||
self.dataset = load_inference_source(
|
||||
source=source,
|
||||
batch=self.args.batch,
|
||||
vid_stride=self.args.vid_stride,
|
||||
buffer=self.args.stream_buffer,
|
||||
)
|
||||
self.source_type = self.dataset.source_type
|
||||
if not getattr(self, 'stream', True) and (self.dataset.mode == 'stream' or # streams
|
||||
len(self.dataset) > 1000 or # images
|
||||
any(getattr(self.dataset, 'video_flag', [False]))): # videos
|
||||
if not getattr(self, "stream", True) and (
|
||||
self.source_type.stream
|
||||
or self.source_type.screenshot
|
||||
or len(self.dataset) > 1000 # many images
|
||||
or any(getattr(self.dataset, "video_flag", [False]))
|
||||
): # videos
|
||||
LOGGER.warning(STREAM_WARNING)
|
||||
self.vid_path, self.vid_writer = [None] * self.dataset.bs, [None] * self.dataset.bs
|
||||
self.vid_writer = {}
|
||||
|
||||
@smart_inference_mode()
|
||||
def stream_inference(self, source=None, model=None, *args, **kwargs):
|
||||
"""Streams real-time inference on camera feed and saves results to file."""
|
||||
if self.args.verbose:
|
||||
LOGGER.info('')
|
||||
LOGGER.info("")
|
||||
|
||||
# Setup model
|
||||
if not self.model:
|
||||
self.setup_model(model)
|
||||
|
||||
# Setup source every time predict is called
|
||||
self.setup_source(source if source is not None else self.args.source)
|
||||
with self._lock: # for thread-safe inference
|
||||
# Setup source every time predict is called
|
||||
self.setup_source(source if source is not None else self.args.source)
|
||||
|
||||
# Check if save_dir/ label file exists
|
||||
if self.args.save or self.args.save_txt:
|
||||
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
|
||||
# Check if save_dir/ label file exists
|
||||
if self.args.save or self.args.save_txt:
|
||||
(self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Warmup model
|
||||
if not self.done_warmup:
|
||||
self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz))
|
||||
self.done_warmup = True
|
||||
# Warmup model
|
||||
if not self.done_warmup:
|
||||
self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz))
|
||||
self.done_warmup = True
|
||||
|
||||
self.seen, self.windows, self.batch, profilers = 0, [], None, (ops.Profile(), ops.Profile(), ops.Profile())
|
||||
self.run_callbacks('on_predict_start')
|
||||
for batch in self.dataset:
|
||||
self.run_callbacks('on_predict_batch_start')
|
||||
self.batch = batch
|
||||
path, im0s, vid_cap, s = batch
|
||||
self.seen, self.windows, self.batch = 0, [], None
|
||||
profilers = (
|
||||
ops.Profile(device=self.device),
|
||||
ops.Profile(device=self.device),
|
||||
ops.Profile(device=self.device),
|
||||
)
|
||||
self.run_callbacks("on_predict_start")
|
||||
for self.batch in self.dataset:
|
||||
self.run_callbacks("on_predict_batch_start")
|
||||
paths, im0s, s = self.batch
|
||||
|
||||
# Preprocess
|
||||
with profilers[0]:
|
||||
im = self.preprocess(im0s)
|
||||
# Preprocess
|
||||
with profilers[0]:
|
||||
im = self.preprocess(im0s)
|
||||
|
||||
# Inference
|
||||
with profilers[1]:
|
||||
preds = self.inference(im, *args, **kwargs)
|
||||
# Inference
|
||||
with profilers[1]:
|
||||
preds = self.inference(im, *args, **kwargs)
|
||||
if self.args.embed:
|
||||
yield from [preds] if isinstance(preds, torch.Tensor) else preds # yield embedding tensors
|
||||
continue
|
||||
|
||||
# Postprocess
|
||||
with profilers[2]:
|
||||
self.results = self.postprocess(preds, im, im0s)
|
||||
self.run_callbacks('on_predict_postprocess_end')
|
||||
# Postprocess
|
||||
with profilers[2]:
|
||||
self.results = self.postprocess(preds, im, im0s)
|
||||
self.run_callbacks("on_predict_postprocess_end")
|
||||
|
||||
# Visualize, save, write results
|
||||
n = len(im0s)
|
||||
for i in range(n):
|
||||
self.seen += 1
|
||||
self.results[i].speed = {
|
||||
'preprocess': profilers[0].dt * 1E3 / n,
|
||||
'inference': profilers[1].dt * 1E3 / n,
|
||||
'postprocess': profilers[2].dt * 1E3 / n}
|
||||
p, im0 = path[i], None if self.source_type.tensor else im0s[i].copy()
|
||||
p = Path(p)
|
||||
# Visualize, save, write results
|
||||
n = len(im0s)
|
||||
for i in range(n):
|
||||
self.seen += 1
|
||||
self.results[i].speed = {
|
||||
"preprocess": profilers[0].dt * 1e3 / n,
|
||||
"inference": profilers[1].dt * 1e3 / n,
|
||||
"postprocess": profilers[2].dt * 1e3 / n,
|
||||
}
|
||||
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
|
||||
s[i] += self.write_results(i, Path(paths[i]), im, s)
|
||||
|
||||
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
|
||||
s += self.write_results(i, self.results, (p, im, im0))
|
||||
if self.args.save or self.args.save_txt:
|
||||
self.results[i].save_dir = self.save_dir.__str__()
|
||||
if self.args.show and self.plotted_img is not None:
|
||||
self.show(p)
|
||||
if self.args.save and self.plotted_img is not None:
|
||||
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
|
||||
# Print batch results
|
||||
if self.args.verbose:
|
||||
LOGGER.info("\n".join(s))
|
||||
|
||||
self.run_callbacks('on_predict_batch_end')
|
||||
yield from self.results
|
||||
|
||||
# Print time (inference-only)
|
||||
if self.args.verbose:
|
||||
LOGGER.info(f'{s}{profilers[1].dt * 1E3:.1f}ms')
|
||||
self.run_callbacks("on_predict_batch_end")
|
||||
yield from self.results
|
||||
|
||||
# Release assets
|
||||
if isinstance(self.vid_writer[-1], cv2.VideoWriter):
|
||||
self.vid_writer[-1].release() # release final video writer
|
||||
for v in self.vid_writer.values():
|
||||
if isinstance(v, cv2.VideoWriter):
|
||||
v.release()
|
||||
|
||||
# Print results
|
||||
# Print final results
|
||||
if self.args.verbose and self.seen:
|
||||
t = tuple(x.t / self.seen * 1E3 for x in profilers) # speeds per image
|
||||
LOGGER.info(f'Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape '
|
||||
f'{(1, 3, *im.shape[2:])}' % t)
|
||||
t = tuple(x.t / self.seen * 1e3 for x in profilers) # speeds per image
|
||||
LOGGER.info(
|
||||
f"Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape "
|
||||
f"{(min(self.args.batch, self.seen), 3, *im.shape[2:])}" % t
|
||||
)
|
||||
if self.args.save or self.args.save_txt or self.args.save_crop:
|
||||
nl = len(list(self.save_dir.glob('labels/*.txt'))) # number of labels
|
||||
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ''
|
||||
nl = len(list(self.save_dir.glob("labels/*.txt"))) # number of labels
|
||||
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ""
|
||||
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
|
||||
|
||||
self.run_callbacks('on_predict_end')
|
||||
self.run_callbacks("on_predict_end")
|
||||
|
||||
def setup_model(self, model, verbose=True):
|
||||
"""Initialize YOLO model with given parameters and set it to evaluation mode."""
|
||||
self.model = AutoBackend(model or self.args.model,
|
||||
device=select_device(self.args.device, verbose=verbose),
|
||||
dnn=self.args.dnn,
|
||||
data=self.args.data,
|
||||
fp16=self.args.half,
|
||||
fuse=True,
|
||||
verbose=verbose)
|
||||
self.model = AutoBackend(
|
||||
weights=model or self.args.model,
|
||||
device=select_device(self.args.device, verbose=verbose),
|
||||
dnn=self.args.dnn,
|
||||
data=self.args.data,
|
||||
fp16=self.args.half,
|
||||
batch=self.args.batch,
|
||||
fuse=True,
|
||||
verbose=verbose,
|
||||
)
|
||||
|
||||
self.device = self.model.device # update device
|
||||
self.args.half = self.model.fp16 # update half
|
||||
self.model.eval()
|
||||
|
||||
def show(self, p):
|
||||
"""Display an image in a window using OpenCV imshow()."""
|
||||
im0 = self.plotted_img
|
||||
if platform.system() == 'Linux' and p not in self.windows:
|
||||
self.windows.append(p)
|
||||
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
||||
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
||||
cv2.imshow(str(p), im0)
|
||||
cv2.waitKey(500 if self.batch[3].startswith('image') else 1) # 1 millisecond
|
||||
def write_results(self, i, p, im, s):
|
||||
"""Write inference results to a file or directory."""
|
||||
string = "" # print string
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
if self.source_type.stream or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1
|
||||
string += f"{i}: "
|
||||
frame = self.dataset.count
|
||||
else:
|
||||
match = re.search(r"frame (\d+)/", s[i])
|
||||
frame = int(match.group(1)) if match else None # 0 if frame undetermined
|
||||
|
||||
def save_preds(self, vid_cap, idx, save_path):
|
||||
self.txt_path = self.save_dir / "labels" / (p.stem + ("" if self.dataset.mode == "image" else f"_{frame}"))
|
||||
string += "%gx%g " % im.shape[2:]
|
||||
result = self.results[i]
|
||||
result.save_dir = self.save_dir.__str__() # used in other locations
|
||||
string += result.verbose() + f"{result.speed['inference']:.1f}ms"
|
||||
|
||||
# Add predictions to image
|
||||
if self.args.save or self.args.show:
|
||||
self.plotted_img = result.plot(
|
||||
line_width=self.args.line_width,
|
||||
boxes=self.args.show_boxes,
|
||||
conf=self.args.show_conf,
|
||||
labels=self.args.show_labels,
|
||||
im_gpu=None if self.args.retina_masks else im[i],
|
||||
)
|
||||
|
||||
# Save results
|
||||
if self.args.save_txt:
|
||||
result.save_txt(f"{self.txt_path}.txt", save_conf=self.args.save_conf)
|
||||
if self.args.save_crop:
|
||||
result.save_crop(save_dir=self.save_dir / "crops", file_name=self.txt_path.stem)
|
||||
if self.args.show:
|
||||
self.show(str(p))
|
||||
if self.args.save:
|
||||
self.save_predicted_images(str(self.save_dir / (p.name or "tmp.jpg")), frame)
|
||||
|
||||
return string
|
||||
|
||||
def save_predicted_images(self, save_path="", frame=0):
|
||||
"""Save video predictions as mp4 at specified path."""
|
||||
im0 = self.plotted_img
|
||||
# Save imgs
|
||||
if self.dataset.mode == 'image':
|
||||
cv2.imwrite(save_path, im0)
|
||||
else: # 'video' or 'stream'
|
||||
if self.vid_path[idx] != save_path: # new video
|
||||
self.vid_path[idx] = save_path
|
||||
if isinstance(self.vid_writer[idx], cv2.VideoWriter):
|
||||
self.vid_writer[idx].release() # release previous video writer
|
||||
if vid_cap: # video
|
||||
fps = int(vid_cap.get(cv2.CAP_PROP_FPS)) # integer required, floats produce error in MP4 codec
|
||||
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
else: # stream
|
||||
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
||||
suffix, fourcc = ('.mp4', 'avc1') if MACOS else ('.avi', 'WMV2') if WINDOWS else ('.avi', 'MJPG')
|
||||
save_path = str(Path(save_path).with_suffix(suffix))
|
||||
self.vid_writer[idx] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
|
||||
self.vid_writer[idx].write(im0)
|
||||
im = self.plotted_img
|
||||
|
||||
# Save videos and streams
|
||||
if self.dataset.mode in {"stream", "video"}:
|
||||
fps = self.dataset.fps if self.dataset.mode == "video" else 30
|
||||
frames_path = f'{save_path.split(".", 1)[0]}_frames/'
|
||||
if save_path not in self.vid_writer: # new video
|
||||
if self.args.save_frames:
|
||||
Path(frames_path).mkdir(parents=True, exist_ok=True)
|
||||
suffix, fourcc = (".mp4", "avc1") if MACOS else (".avi", "WMV2") if WINDOWS else (".avi", "MJPG")
|
||||
self.vid_writer[save_path] = cv2.VideoWriter(
|
||||
filename=str(Path(save_path).with_suffix(suffix)),
|
||||
fourcc=cv2.VideoWriter_fourcc(*fourcc),
|
||||
fps=fps, # integer required, floats produce error in MP4 codec
|
||||
frameSize=(im.shape[1], im.shape[0]), # (width, height)
|
||||
)
|
||||
|
||||
# Save video
|
||||
self.vid_writer[save_path].write(im)
|
||||
if self.args.save_frames:
|
||||
cv2.imwrite(f"{frames_path}{frame}.jpg", im)
|
||||
|
||||
# Save images
|
||||
else:
|
||||
cv2.imwrite(save_path, im)
|
||||
|
||||
def show(self, p=""):
|
||||
"""Display an image in a window using OpenCV imshow()."""
|
||||
im = self.plotted_img
|
||||
if platform.system() == "Linux" and p not in self.windows:
|
||||
self.windows.append(p)
|
||||
cv2.namedWindow(p, cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
||||
cv2.resizeWindow(p, im.shape[1], im.shape[0]) # (width, height)
|
||||
cv2.imshow(p, im)
|
||||
cv2.waitKey(300 if self.dataset.mode == "image" else 1) # 1 millisecond
|
||||
|
||||
def run_callbacks(self, event: str):
|
||||
"""Runs all registered callbacks for a specific event."""
|
||||
@ -352,7 +393,5 @@ class BasePredictor:
|
||||
callback(self)
|
||||
|
||||
def add_callback(self, event: str, func):
|
||||
"""
|
||||
Add callback
|
||||
"""
|
||||
"""Add callback."""
|
||||
self.callbacks[event].append(func)
|
||||
|
Reference in New Issue
Block a user