add yolo v10 and modify pipeline

This commit is contained in:
王庆刚
2025-03-28 13:19:54 +08:00
parent 183299c06b
commit 798c596acc
471 changed files with 19109 additions and 7342 deletions

View File

@ -15,7 +15,6 @@ import psutil
from torch.utils.data import Dataset
from ultralytics.utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM
from .utils import HELP_URL, IMG_FORMATS
@ -47,20 +46,23 @@ class BaseDataset(Dataset):
transforms (callable): Image transformation function.
"""
def __init__(self,
img_path,
imgsz=640,
cache=False,
augment=True,
hyp=DEFAULT_CFG,
prefix='',
rect=False,
batch_size=16,
stride=32,
pad=0.5,
single_cls=False,
classes=None,
fraction=1.0):
def __init__(
self,
img_path,
imgsz=640,
cache=False,
augment=True,
hyp=DEFAULT_CFG,
prefix="",
rect=False,
batch_size=16,
stride=32,
pad=0.5,
single_cls=False,
classes=None,
fraction=1.0,
):
"""Initialize BaseDataset with given configuration and options."""
super().__init__()
self.img_path = img_path
self.imgsz = imgsz
@ -84,11 +86,11 @@ class BaseDataset(Dataset):
self.buffer = [] # buffer size = batch size
self.max_buffer_length = min((self.ni, self.batch_size * 8, 1000)) if self.augment else 0
# Cache stuff
if cache == 'ram' and not self.check_cache_ram():
# Cache images
if cache == "ram" and not self.check_cache_ram():
cache = False
self.ims, self.im_hw0, self.im_hw = [None] * self.ni, [None] * self.ni, [None] * self.ni
self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
self.npy_files = [Path(f).with_suffix(".npy") for f in self.im_files]
if cache:
self.cache_images(cache)
@ -102,54 +104,62 @@ class BaseDataset(Dataset):
for p in img_path if isinstance(img_path, list) else [img_path]:
p = Path(p) # os-agnostic
if p.is_dir(): # dir
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
f += glob.glob(str(p / "**" / "*.*"), recursive=True)
# F = list(p.rglob('*.*')) # pathlib
elif p.is_file(): # file
with open(p) as t:
t = t.read().strip().splitlines()
parent = str(p.parent) + os.sep
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
f += [x.replace("./", parent) if x.startswith("./") else x for x in t] # local to global path
# F += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
else:
raise FileNotFoundError(f'{self.prefix}{p} does not exist')
im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
raise FileNotFoundError(f"{self.prefix}{p} does not exist")
im_files = sorted(x.replace("/", os.sep) for x in f if x.split(".")[-1].lower() in IMG_FORMATS)
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
assert im_files, f'{self.prefix}No images found in {img_path}'
assert im_files, f"{self.prefix}No images found in {img_path}"
except Exception as e:
raise FileNotFoundError(f'{self.prefix}Error loading data from {img_path}\n{HELP_URL}') from e
raise FileNotFoundError(f"{self.prefix}Error loading data from {img_path}\n{HELP_URL}") from e
if self.fraction < 1:
im_files = im_files[:round(len(im_files) * self.fraction)]
# im_files = im_files[: round(len(im_files) * self.fraction)]
num_elements_to_select = round(len(im_files) * self.fraction)
im_files = random.sample(im_files, num_elements_to_select)
return im_files
def update_labels(self, include_class: Optional[list]):
"""include_class, filter labels to include only these classes (optional)."""
"""Update labels to include only these classes (optional)."""
include_class_array = np.array(include_class).reshape(1, -1)
for i in range(len(self.labels)):
if include_class is not None:
cls = self.labels[i]['cls']
bboxes = self.labels[i]['bboxes']
segments = self.labels[i]['segments']
keypoints = self.labels[i]['keypoints']
cls = self.labels[i]["cls"]
bboxes = self.labels[i]["bboxes"]
segments = self.labels[i]["segments"]
keypoints = self.labels[i]["keypoints"]
j = (cls == include_class_array).any(1)
self.labels[i]['cls'] = cls[j]
self.labels[i]['bboxes'] = bboxes[j]
self.labels[i]["cls"] = cls[j]
self.labels[i]["bboxes"] = bboxes[j]
if segments:
self.labels[i]['segments'] = [segments[si] for si, idx in enumerate(j) if idx]
self.labels[i]["segments"] = [segments[si] for si, idx in enumerate(j) if idx]
if keypoints is not None:
self.labels[i]['keypoints'] = keypoints[j]
self.labels[i]["keypoints"] = keypoints[j]
if self.single_cls:
self.labels[i]['cls'][:, 0] = 0
self.labels[i]["cls"][:, 0] = 0
def load_image(self, i, rect_mode=True):
"""Loads 1 image from dataset index 'i', returns (im, resized hw)."""
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i]
if im is None: # not cached in RAM
if fn.exists(): # load npy
im = np.load(fn)
try:
im = np.load(fn)
except Exception as e:
LOGGER.warning(f"{self.prefix}WARNING ⚠️ Removing corrupt *.npy image file {fn} due to: {e}")
Path(fn).unlink(missing_ok=True)
im = cv2.imread(f) # BGR
else: # read image
im = cv2.imread(f) # BGR
if im is None:
raise FileNotFoundError(f'Image Not Found {f}')
if im is None:
raise FileNotFoundError(f"Image Not Found {f}")
h0, w0 = im.shape[:2] # orig hw
if rect_mode: # resize long side to imgsz while maintaining aspect ratio
r = self.imgsz / max(h0, w0) # ratio
@ -174,17 +184,17 @@ class BaseDataset(Dataset):
def cache_images(self, cache):
"""Cache images to memory or disk."""
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
fcn = self.cache_images_to_disk if cache == 'disk' else self.load_image
fcn = self.cache_images_to_disk if cache == "disk" else self.load_image
with ThreadPool(NUM_THREADS) as pool:
results = pool.imap(fcn, range(self.ni))
pbar = TQDM(enumerate(results), total=self.ni, disable=LOCAL_RANK > 0)
for i, x in pbar:
if cache == 'disk':
if cache == "disk":
b += self.npy_files[i].stat().st_size
else: # 'ram'
self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
b += self.ims[i].nbytes
pbar.desc = f'{self.prefix}Caching images ({b / gb:.1f}GB {cache})'
pbar.desc = f"{self.prefix}Caching images ({b / gb:.1f}GB {cache})"
pbar.close()
def cache_images_to_disk(self, i):
@ -200,15 +210,17 @@ class BaseDataset(Dataset):
for _ in range(n):
im = cv2.imread(random.choice(self.im_files)) # sample image
ratio = self.imgsz / max(im.shape[0], im.shape[1]) # max(h, w) # ratio
b += im.nbytes * ratio ** 2
b += im.nbytes * ratio**2
mem_required = b * self.ni / n * (1 + safety_margin) # GB required to cache dataset into RAM
mem = psutil.virtual_memory()
cache = mem_required < mem.available # to cache or not to cache, that is the question
if not cache:
LOGGER.info(f'{self.prefix}{mem_required / gb:.1f}GB RAM required to cache images '
f'with {int(safety_margin * 100)}% safety margin but only '
f'{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, '
f"{'caching images ✅' if cache else 'not caching images ⚠️'}")
LOGGER.info(
f'{self.prefix}{mem_required / gb:.1f}GB RAM required to cache images '
f'with {int(safety_margin * 100)}% safety margin but only '
f'{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, '
f"{'caching images ✅' if cache else 'not caching images ⚠️'}"
)
return cache
def set_rectangle(self):
@ -216,7 +228,7 @@ class BaseDataset(Dataset):
bi = np.floor(np.arange(self.ni) / self.batch_size).astype(int) # batch index
nb = bi[-1] + 1 # number of batches
s = np.array([x.pop('shape') for x in self.labels]) # hw
s = np.array([x.pop("shape") for x in self.labels]) # hw
ar = s[:, 0] / s[:, 1] # aspect ratio
irect = ar.argsort()
self.im_files = [self.im_files[i] for i in irect]
@ -243,12 +255,14 @@ class BaseDataset(Dataset):
def get_image_and_label(self, index):
"""Get and return label information from the dataset."""
label = deepcopy(self.labels[index]) # requires deepcopy() https://github.com/ultralytics/ultralytics/pull/1948
label.pop('shape', None) # shape is for rect, remove it
label['img'], label['ori_shape'], label['resized_shape'] = self.load_image(index)
label['ratio_pad'] = (label['resized_shape'][0] / label['ori_shape'][0],
label['resized_shape'][1] / label['ori_shape'][1]) # for evaluation
label.pop("shape", None) # shape is for rect, remove it
label["img"], label["ori_shape"], label["resized_shape"] = self.load_image(index)
label["ratio_pad"] = (
label["resized_shape"][0] / label["ori_shape"][0],
label["resized_shape"][1] / label["ori_shape"][1],
) # for evaluation
if self.rect:
label['rect_shape'] = self.batch_shapes[self.batch[index]]
label["rect_shape"] = self.batch_shapes[self.batch[index]]
return self.update_labels_info(label)
def __len__(self):
@ -256,24 +270,32 @@ class BaseDataset(Dataset):
return len(self.labels)
def update_labels_info(self, label):
"""custom your label format here."""
"""Custom your label format here."""
return label
def build_transforms(self, hyp=None):
"""Users can custom augmentations here
like:
"""
Users can customize augmentations here.
Example:
```python
if self.augment:
# Training transforms
return Compose([])
else:
# Val transforms
return Compose([])
```
"""
raise NotImplementedError
def get_labels(self):
"""Users can custom their own format here.
Make sure your output is a list with each element like below:
"""
Users can customize their own format here.
Note:
Ensure output is a dictionary with the following keys:
```python
dict(
im_file=im_file,
shape=shape, # format: (height, width)
@ -284,5 +306,6 @@ class BaseDataset(Dataset):
normalized=True, # or False
bbox_format="xyxy", # or xywh, ltwh
)
```
"""
raise NotImplementedError