add yolo v10 and modify pipeline
This commit is contained in:
@ -15,7 +15,6 @@ import psutil
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from ultralytics.utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM
|
||||
|
||||
from .utils import HELP_URL, IMG_FORMATS
|
||||
|
||||
|
||||
@ -47,20 +46,23 @@ class BaseDataset(Dataset):
|
||||
transforms (callable): Image transformation function.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
img_path,
|
||||
imgsz=640,
|
||||
cache=False,
|
||||
augment=True,
|
||||
hyp=DEFAULT_CFG,
|
||||
prefix='',
|
||||
rect=False,
|
||||
batch_size=16,
|
||||
stride=32,
|
||||
pad=0.5,
|
||||
single_cls=False,
|
||||
classes=None,
|
||||
fraction=1.0):
|
||||
def __init__(
|
||||
self,
|
||||
img_path,
|
||||
imgsz=640,
|
||||
cache=False,
|
||||
augment=True,
|
||||
hyp=DEFAULT_CFG,
|
||||
prefix="",
|
||||
rect=False,
|
||||
batch_size=16,
|
||||
stride=32,
|
||||
pad=0.5,
|
||||
single_cls=False,
|
||||
classes=None,
|
||||
fraction=1.0,
|
||||
):
|
||||
"""Initialize BaseDataset with given configuration and options."""
|
||||
super().__init__()
|
||||
self.img_path = img_path
|
||||
self.imgsz = imgsz
|
||||
@ -84,11 +86,11 @@ class BaseDataset(Dataset):
|
||||
self.buffer = [] # buffer size = batch size
|
||||
self.max_buffer_length = min((self.ni, self.batch_size * 8, 1000)) if self.augment else 0
|
||||
|
||||
# Cache stuff
|
||||
if cache == 'ram' and not self.check_cache_ram():
|
||||
# Cache images
|
||||
if cache == "ram" and not self.check_cache_ram():
|
||||
cache = False
|
||||
self.ims, self.im_hw0, self.im_hw = [None] * self.ni, [None] * self.ni, [None] * self.ni
|
||||
self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
|
||||
self.npy_files = [Path(f).with_suffix(".npy") for f in self.im_files]
|
||||
if cache:
|
||||
self.cache_images(cache)
|
||||
|
||||
@ -102,54 +104,62 @@ class BaseDataset(Dataset):
|
||||
for p in img_path if isinstance(img_path, list) else [img_path]:
|
||||
p = Path(p) # os-agnostic
|
||||
if p.is_dir(): # dir
|
||||
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
|
||||
f += glob.glob(str(p / "**" / "*.*"), recursive=True)
|
||||
# F = list(p.rglob('*.*')) # pathlib
|
||||
elif p.is_file(): # file
|
||||
with open(p) as t:
|
||||
t = t.read().strip().splitlines()
|
||||
parent = str(p.parent) + os.sep
|
||||
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
|
||||
f += [x.replace("./", parent) if x.startswith("./") else x for x in t] # local to global path
|
||||
# F += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
|
||||
else:
|
||||
raise FileNotFoundError(f'{self.prefix}{p} does not exist')
|
||||
im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
|
||||
raise FileNotFoundError(f"{self.prefix}{p} does not exist")
|
||||
im_files = sorted(x.replace("/", os.sep) for x in f if x.split(".")[-1].lower() in IMG_FORMATS)
|
||||
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
|
||||
assert im_files, f'{self.prefix}No images found in {img_path}'
|
||||
assert im_files, f"{self.prefix}No images found in {img_path}"
|
||||
except Exception as e:
|
||||
raise FileNotFoundError(f'{self.prefix}Error loading data from {img_path}\n{HELP_URL}') from e
|
||||
raise FileNotFoundError(f"{self.prefix}Error loading data from {img_path}\n{HELP_URL}") from e
|
||||
if self.fraction < 1:
|
||||
im_files = im_files[:round(len(im_files) * self.fraction)]
|
||||
# im_files = im_files[: round(len(im_files) * self.fraction)]
|
||||
num_elements_to_select = round(len(im_files) * self.fraction)
|
||||
im_files = random.sample(im_files, num_elements_to_select)
|
||||
return im_files
|
||||
|
||||
def update_labels(self, include_class: Optional[list]):
|
||||
"""include_class, filter labels to include only these classes (optional)."""
|
||||
"""Update labels to include only these classes (optional)."""
|
||||
include_class_array = np.array(include_class).reshape(1, -1)
|
||||
for i in range(len(self.labels)):
|
||||
if include_class is not None:
|
||||
cls = self.labels[i]['cls']
|
||||
bboxes = self.labels[i]['bboxes']
|
||||
segments = self.labels[i]['segments']
|
||||
keypoints = self.labels[i]['keypoints']
|
||||
cls = self.labels[i]["cls"]
|
||||
bboxes = self.labels[i]["bboxes"]
|
||||
segments = self.labels[i]["segments"]
|
||||
keypoints = self.labels[i]["keypoints"]
|
||||
j = (cls == include_class_array).any(1)
|
||||
self.labels[i]['cls'] = cls[j]
|
||||
self.labels[i]['bboxes'] = bboxes[j]
|
||||
self.labels[i]["cls"] = cls[j]
|
||||
self.labels[i]["bboxes"] = bboxes[j]
|
||||
if segments:
|
||||
self.labels[i]['segments'] = [segments[si] for si, idx in enumerate(j) if idx]
|
||||
self.labels[i]["segments"] = [segments[si] for si, idx in enumerate(j) if idx]
|
||||
if keypoints is not None:
|
||||
self.labels[i]['keypoints'] = keypoints[j]
|
||||
self.labels[i]["keypoints"] = keypoints[j]
|
||||
if self.single_cls:
|
||||
self.labels[i]['cls'][:, 0] = 0
|
||||
self.labels[i]["cls"][:, 0] = 0
|
||||
|
||||
def load_image(self, i, rect_mode=True):
|
||||
"""Loads 1 image from dataset index 'i', returns (im, resized hw)."""
|
||||
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i]
|
||||
if im is None: # not cached in RAM
|
||||
if fn.exists(): # load npy
|
||||
im = np.load(fn)
|
||||
try:
|
||||
im = np.load(fn)
|
||||
except Exception as e:
|
||||
LOGGER.warning(f"{self.prefix}WARNING ⚠️ Removing corrupt *.npy image file {fn} due to: {e}")
|
||||
Path(fn).unlink(missing_ok=True)
|
||||
im = cv2.imread(f) # BGR
|
||||
else: # read image
|
||||
im = cv2.imread(f) # BGR
|
||||
if im is None:
|
||||
raise FileNotFoundError(f'Image Not Found {f}')
|
||||
if im is None:
|
||||
raise FileNotFoundError(f"Image Not Found {f}")
|
||||
|
||||
h0, w0 = im.shape[:2] # orig hw
|
||||
if rect_mode: # resize long side to imgsz while maintaining aspect ratio
|
||||
r = self.imgsz / max(h0, w0) # ratio
|
||||
@ -174,17 +184,17 @@ class BaseDataset(Dataset):
|
||||
def cache_images(self, cache):
|
||||
"""Cache images to memory or disk."""
|
||||
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
|
||||
fcn = self.cache_images_to_disk if cache == 'disk' else self.load_image
|
||||
fcn = self.cache_images_to_disk if cache == "disk" else self.load_image
|
||||
with ThreadPool(NUM_THREADS) as pool:
|
||||
results = pool.imap(fcn, range(self.ni))
|
||||
pbar = TQDM(enumerate(results), total=self.ni, disable=LOCAL_RANK > 0)
|
||||
for i, x in pbar:
|
||||
if cache == 'disk':
|
||||
if cache == "disk":
|
||||
b += self.npy_files[i].stat().st_size
|
||||
else: # 'ram'
|
||||
self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
|
||||
b += self.ims[i].nbytes
|
||||
pbar.desc = f'{self.prefix}Caching images ({b / gb:.1f}GB {cache})'
|
||||
pbar.desc = f"{self.prefix}Caching images ({b / gb:.1f}GB {cache})"
|
||||
pbar.close()
|
||||
|
||||
def cache_images_to_disk(self, i):
|
||||
@ -200,15 +210,17 @@ class BaseDataset(Dataset):
|
||||
for _ in range(n):
|
||||
im = cv2.imread(random.choice(self.im_files)) # sample image
|
||||
ratio = self.imgsz / max(im.shape[0], im.shape[1]) # max(h, w) # ratio
|
||||
b += im.nbytes * ratio ** 2
|
||||
b += im.nbytes * ratio**2
|
||||
mem_required = b * self.ni / n * (1 + safety_margin) # GB required to cache dataset into RAM
|
||||
mem = psutil.virtual_memory()
|
||||
cache = mem_required < mem.available # to cache or not to cache, that is the question
|
||||
if not cache:
|
||||
LOGGER.info(f'{self.prefix}{mem_required / gb:.1f}GB RAM required to cache images '
|
||||
f'with {int(safety_margin * 100)}% safety margin but only '
|
||||
f'{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, '
|
||||
f"{'caching images ✅' if cache else 'not caching images ⚠️'}")
|
||||
LOGGER.info(
|
||||
f'{self.prefix}{mem_required / gb:.1f}GB RAM required to cache images '
|
||||
f'with {int(safety_margin * 100)}% safety margin but only '
|
||||
f'{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, '
|
||||
f"{'caching images ✅' if cache else 'not caching images ⚠️'}"
|
||||
)
|
||||
return cache
|
||||
|
||||
def set_rectangle(self):
|
||||
@ -216,7 +228,7 @@ class BaseDataset(Dataset):
|
||||
bi = np.floor(np.arange(self.ni) / self.batch_size).astype(int) # batch index
|
||||
nb = bi[-1] + 1 # number of batches
|
||||
|
||||
s = np.array([x.pop('shape') for x in self.labels]) # hw
|
||||
s = np.array([x.pop("shape") for x in self.labels]) # hw
|
||||
ar = s[:, 0] / s[:, 1] # aspect ratio
|
||||
irect = ar.argsort()
|
||||
self.im_files = [self.im_files[i] for i in irect]
|
||||
@ -243,12 +255,14 @@ class BaseDataset(Dataset):
|
||||
def get_image_and_label(self, index):
|
||||
"""Get and return label information from the dataset."""
|
||||
label = deepcopy(self.labels[index]) # requires deepcopy() https://github.com/ultralytics/ultralytics/pull/1948
|
||||
label.pop('shape', None) # shape is for rect, remove it
|
||||
label['img'], label['ori_shape'], label['resized_shape'] = self.load_image(index)
|
||||
label['ratio_pad'] = (label['resized_shape'][0] / label['ori_shape'][0],
|
||||
label['resized_shape'][1] / label['ori_shape'][1]) # for evaluation
|
||||
label.pop("shape", None) # shape is for rect, remove it
|
||||
label["img"], label["ori_shape"], label["resized_shape"] = self.load_image(index)
|
||||
label["ratio_pad"] = (
|
||||
label["resized_shape"][0] / label["ori_shape"][0],
|
||||
label["resized_shape"][1] / label["ori_shape"][1],
|
||||
) # for evaluation
|
||||
if self.rect:
|
||||
label['rect_shape'] = self.batch_shapes[self.batch[index]]
|
||||
label["rect_shape"] = self.batch_shapes[self.batch[index]]
|
||||
return self.update_labels_info(label)
|
||||
|
||||
def __len__(self):
|
||||
@ -256,24 +270,32 @@ class BaseDataset(Dataset):
|
||||
return len(self.labels)
|
||||
|
||||
def update_labels_info(self, label):
|
||||
"""custom your label format here."""
|
||||
"""Custom your label format here."""
|
||||
return label
|
||||
|
||||
def build_transforms(self, hyp=None):
|
||||
"""Users can custom augmentations here
|
||||
like:
|
||||
"""
|
||||
Users can customize augmentations here.
|
||||
|
||||
Example:
|
||||
```python
|
||||
if self.augment:
|
||||
# Training transforms
|
||||
return Compose([])
|
||||
else:
|
||||
# Val transforms
|
||||
return Compose([])
|
||||
```
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def get_labels(self):
|
||||
"""Users can custom their own format here.
|
||||
Make sure your output is a list with each element like below:
|
||||
"""
|
||||
Users can customize their own format here.
|
||||
|
||||
Note:
|
||||
Ensure output is a dictionary with the following keys:
|
||||
```python
|
||||
dict(
|
||||
im_file=im_file,
|
||||
shape=shape, # format: (height, width)
|
||||
@ -284,5 +306,6 @@ class BaseDataset(Dataset):
|
||||
normalized=True, # or False
|
||||
bbox_format="xyxy", # or xywh, ltwh
|
||||
)
|
||||
```
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
Reference in New Issue
Block a user