add yolo v10 and modify pipeline
This commit is contained in:
25
ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml
Normal file
25
ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml
Normal file
@ -0,0 +1,25 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
|
||||
|
||||
# Parameters
|
||||
nc: 1000 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
s: [0.33, 0.50, 1024]
|
||||
m: [0.67, 0.75, 1024]
|
||||
l: [1.00, 1.00, 1024]
|
||||
x: [1.00, 1.25, 1024]
|
||||
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0-P1/2
|
||||
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1-P2/4
|
||||
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2-P3/8
|
||||
- [-1, 1, ResNetLayer, [512, 256, 2, False, 23]] # 3-P4/16
|
||||
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4-P5/32
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, Classify, [nc]] # Classify
|
25
ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml
Normal file
25
ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml
Normal file
@ -0,0 +1,25 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
|
||||
|
||||
# Parameters
|
||||
nc: 1000 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
s: [0.33, 0.50, 1024]
|
||||
m: [0.67, 0.75, 1024]
|
||||
l: [1.00, 1.00, 1024]
|
||||
x: [1.00, 1.25, 1024]
|
||||
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0-P1/2
|
||||
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1-P2/4
|
||||
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2-P3/8
|
||||
- [-1, 1, ResNetLayer, [512, 256, 2, False, 6]] # 3-P4/16
|
||||
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4-P5/32
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, Classify, [nc]] # Classify
|
@ -2,7 +2,7 @@
|
||||
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
|
||||
|
||||
# Parameters
|
||||
nc: 1000 # number of classes
|
||||
nc: 1000 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
@ -14,16 +14,16 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will c
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, Classify, [nc]] # Classify
|
||||
- [-1, 1, Classify, [nc]] # Classify
|
||||
|
54
ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml
Normal file
54
ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml
Normal file
@ -0,0 +1,54 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# YOLOv8 object detection model with P2-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024] # YOLOv8n-ghost-p2 summary: 491 layers, 2033944 parameters, 2033928 gradients, 13.8 GFLOPs
|
||||
s: [0.33, 0.50, 1024] # YOLOv8s-ghost-p2 summary: 491 layers, 5562080 parameters, 5562064 gradients, 25.1 GFLOPs
|
||||
m: [0.67, 0.75, 768] # YOLOv8m-ghost-p2 summary: 731 layers, 9031728 parameters, 9031712 gradients, 42.8 GFLOPs
|
||||
l: [1.00, 1.00, 512] # YOLOv8l-ghost-p2 summary: 971 layers, 12214448 parameters, 12214432 gradients, 69.1 GFLOPs
|
||||
x: [1.00, 1.25, 512] # YOLOv8x-ghost-p2 summary: 971 layers, 18664776 parameters, 18664760 gradients, 103.3 GFLOPs
|
||||
|
||||
# YOLOv8.0-ghost backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, GhostConv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C3Ghost, [128, True]]
|
||||
- [-1, 1, GhostConv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C3Ghost, [256, True]]
|
||||
- [-1, 1, GhostConv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C3Ghost, [512, True]]
|
||||
- [-1, 1, GhostConv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C3Ghost, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv8.0-ghost-p2 head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C3Ghost, [512]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C3Ghost, [256]] # 15 (P3/8-small)
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 2], 1, Concat, [1]] # cat backbone P2
|
||||
- [-1, 3, C3Ghost, [128]] # 18 (P2/4-xsmall)
|
||||
|
||||
- [-1, 1, GhostConv, [128, 3, 2]]
|
||||
- [[-1, 15], 1, Concat, [1]] # cat head P3
|
||||
- [-1, 3, C3Ghost, [256]] # 21 (P3/8-small)
|
||||
|
||||
- [-1, 1, GhostConv, [256, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C3Ghost, [512]] # 24 (P4/16-medium)
|
||||
|
||||
- [-1, 1, GhostConv, [512, 3, 2]]
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C3Ghost, [1024]] # 27 (P5/32-large)
|
||||
|
||||
- [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)
|
56
ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml
Normal file
56
ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml
Normal file
@ -0,0 +1,56 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# YOLOv8 object detection model with P3-P6 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024] # YOLOv8n-ghost-p6 summary: 529 layers, 2901100 parameters, 2901084 gradients, 5.8 GFLOPs
|
||||
s: [0.33, 0.50, 1024] # YOLOv8s-ghost-p6 summary: 529 layers, 9520008 parameters, 9519992 gradients, 16.4 GFLOPs
|
||||
m: [0.67, 0.75, 768] # YOLOv8m-ghost-p6 summary: 789 layers, 18002904 parameters, 18002888 gradients, 34.4 GFLOPs
|
||||
l: [1.00, 1.00, 512] # YOLOv8l-ghost-p6 summary: 1049 layers, 21227584 parameters, 21227568 gradients, 55.3 GFLOPs
|
||||
x: [1.00, 1.25, 512] # YOLOv8x-ghost-p6 summary: 1049 layers, 33057852 parameters, 33057836 gradients, 85.7 GFLOPs
|
||||
|
||||
# YOLOv8.0-ghost backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, GhostConv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C3Ghost, [128, True]]
|
||||
- [-1, 1, GhostConv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C3Ghost, [256, True]]
|
||||
- [-1, 1, GhostConv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C3Ghost, [512, True]]
|
||||
- [-1, 1, GhostConv, [768, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C3Ghost, [768, True]]
|
||||
- [-1, 1, GhostConv, [1024, 3, 2]] # 9-P6/64
|
||||
- [-1, 3, C3Ghost, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 11
|
||||
|
||||
# YOLOv8.0-ghost-p6 head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
|
||||
- [-1, 3, C3Ghost, [768]] # 14
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C3Ghost, [512]] # 17
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C3Ghost, [256]] # 20 (P3/8-small)
|
||||
|
||||
- [-1, 1, GhostConv, [256, 3, 2]]
|
||||
- [[-1, 17], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C3Ghost, [512]] # 23 (P4/16-medium)
|
||||
|
||||
- [-1, 1, GhostConv, [512, 3, 2]]
|
||||
- [[-1, 14], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C3Ghost, [768]] # 26 (P5/32-large)
|
||||
|
||||
- [-1, 1, GhostConv, [768, 3, 2]]
|
||||
- [[-1, 11], 1, Concat, [1]] # cat head P6
|
||||
- [-1, 3, C3Ghost, [1024]] # 29 (P6/64-xlarge)
|
||||
|
||||
- [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)
|
47
ultralytics/cfg/models/v8/yolov8-ghost.yaml
Normal file
47
ultralytics/cfg/models/v8/yolov8-ghost.yaml
Normal file
@ -0,0 +1,47 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
||||
# Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024] # YOLOv8n-ghost summary: 403 layers, 1865316 parameters, 1865300 gradients, 5.8 GFLOPs
|
||||
s: [0.33, 0.50, 1024] # YOLOv8s-ghost summary: 403 layers, 5960072 parameters, 5960056 gradients, 16.4 GFLOPs
|
||||
m: [0.67, 0.75, 768] # YOLOv8m-ghost summary: 603 layers, 10336312 parameters, 10336296 gradients, 32.7 GFLOPs
|
||||
l: [1.00, 1.00, 512] # YOLOv8l-ghost summary: 803 layers, 14277872 parameters, 14277856 gradients, 53.7 GFLOPs
|
||||
x: [1.00, 1.25, 512] # YOLOv8x-ghost summary: 803 layers, 22229308 parameters, 22229292 gradients, 83.3 GFLOPs
|
||||
|
||||
# YOLOv8.0n-ghost backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, GhostConv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C3Ghost, [128, True]]
|
||||
- [-1, 1, GhostConv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C3Ghost, [256, True]]
|
||||
- [-1, 1, GhostConv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C3Ghost, [512, True]]
|
||||
- [-1, 1, GhostConv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C3Ghost, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C3Ghost, [512]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C3Ghost, [256]] # 15 (P3/8-small)
|
||||
|
||||
- [-1, 1, GhostConv, [256, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C3Ghost, [512]] # 18 (P4/16-medium)
|
||||
|
||||
- [-1, 1, GhostConv, [512, 3, 2]]
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C3Ghost, [1024]] # 21 (P5/32-large)
|
||||
|
||||
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
46
ultralytics/cfg/models/v8/yolov8-obb.yaml
Normal file
46
ultralytics/cfg/models/v8/yolov8-obb.yaml
Normal file
@ -0,0 +1,46 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# YOLOv8 Oriented Bounding Boxes (OBB) model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
|
||||
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
|
||||
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
|
||||
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
|
||||
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
|
||||
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
|
||||
|
||||
- [[15, 18, 21], 1, OBB, [nc, 1]] # OBB(P3, P4, P5)
|
@ -2,7 +2,7 @@
|
||||
# YOLOv8 object detection model with P2-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
@ -14,41 +14,41 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call
|
||||
# YOLOv8.0 backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv8.0-p2 head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 2], 1, Concat, [1]] # cat backbone P2
|
||||
- [-1, 3, C2f, [128]] # 18 (P2/4-xsmall)
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 2], 1, Concat, [1]] # cat backbone P2
|
||||
- [-1, 3, C2f, [128]] # 18 (P2/4-xsmall)
|
||||
|
||||
- [-1, 1, Conv, [128, 3, 2]]
|
||||
- [[-1, 15], 1, Concat, [1]] # cat head P3
|
||||
- [-1, 3, C2f, [256]] # 21 (P3/8-small)
|
||||
- [[-1, 15], 1, Concat, [1]] # cat head P3
|
||||
- [-1, 3, C2f, [256]] # 21 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 24 (P4/16-medium)
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 24 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 27 (P5/32-large)
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 27 (P5/32-large)
|
||||
|
||||
- [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)
|
||||
- [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)
|
||||
|
@ -2,7 +2,7 @@
|
||||
# YOLOv8 object detection model with P3-P6 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
@ -14,43 +14,43 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will ca
|
||||
# YOLOv8.0x6 backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
|
||||
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [768, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 11
|
||||
- [-1, 1, SPPF, [1024, 5]] # 11
|
||||
|
||||
# YOLOv8.0x6 head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
|
||||
- [-1, 3, C2, [768, False]] # 14
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
|
||||
- [-1, 3, C2, [768, False]] # 14
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2, [512, False]] # 17
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2, [512, False]] # 17
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2, [256, False]] # 20 (P3/8-small)
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2, [256, False]] # 20 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 17], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
|
||||
- [[-1, 17], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 14], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2, [768, False]] # 26 (P5/32-large)
|
||||
- [[-1, 14], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2, [768, False]] # 26 (P5/32-large)
|
||||
|
||||
- [-1, 1, Conv, [768, 3, 2]]
|
||||
- [[-1, 11], 1, Concat, [1]] # cat head P6
|
||||
- [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
|
||||
- [[-1, 11], 1, Concat, [1]] # cat head P6
|
||||
- [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
|
||||
|
||||
- [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)
|
||||
- [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)
|
||||
|
@ -2,8 +2,8 @@
|
||||
# YOLOv8-pose-p6 keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
|
||||
|
||||
# Parameters
|
||||
nc: 1 # number of classes
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
nc: 1 # number of classes
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
@ -15,43 +15,43 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will ca
|
||||
# YOLOv8.0x6 backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
|
||||
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [768, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 11
|
||||
- [-1, 1, SPPF, [1024, 5]] # 11
|
||||
|
||||
# YOLOv8.0x6 head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
|
||||
- [-1, 3, C2, [768, False]] # 14
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
|
||||
- [-1, 3, C2, [768, False]] # 14
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2, [512, False]] # 17
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2, [512, False]] # 17
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2, [256, False]] # 20 (P3/8-small)
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2, [256, False]] # 20 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 17], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
|
||||
- [[-1, 17], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 14], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2, [768, False]] # 26 (P5/32-large)
|
||||
- [[-1, 14], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2, [768, False]] # 26 (P5/32-large)
|
||||
|
||||
- [-1, 1, Conv, [768, 3, 2]]
|
||||
- [[-1, 11], 1, Concat, [1]] # cat head P6
|
||||
- [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
|
||||
- [[-1, 11], 1, Concat, [1]] # cat head P6
|
||||
- [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
|
||||
|
||||
- [[20, 23, 26, 29], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5, P6)
|
||||
- [[20, 23, 26, 29], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5, P6)
|
||||
|
@ -2,8 +2,8 @@
|
||||
# YOLOv8-pose keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
|
||||
|
||||
# Parameters
|
||||
nc: 1 # number of classes
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
nc: 1 # number of classes
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-pose.yaml' will call yolov8-pose.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
@ -15,33 +15,33 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n-pose.yaml' will
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
|
||||
|
||||
- [[15, 18, 21], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5)
|
||||
- [[15, 18, 21], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5)
|
||||
|
@ -2,45 +2,45 @@
|
||||
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
|
||||
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
|
||||
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
|
||||
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
|
||||
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
|
||||
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
|
||||
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
|
||||
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
|
||||
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
|
||||
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
|
||||
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
|
||||
|
||||
- [[15, 18, 21], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
|
||||
- [[15, 18, 21], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
|
||||
|
@ -2,7 +2,7 @@
|
||||
# YOLOv8-seg-p6 instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-seg-p6.yaml' will call yolov8-seg-p6.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
@ -14,43 +14,43 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n-seg-p6.yaml' wil
|
||||
# YOLOv8.0x6 backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
|
||||
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [768, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 11
|
||||
- [-1, 1, SPPF, [1024, 5]] # 11
|
||||
|
||||
# YOLOv8.0x6 head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
|
||||
- [-1, 3, C2, [768, False]] # 14
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
|
||||
- [-1, 3, C2, [768, False]] # 14
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2, [512, False]] # 17
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2, [512, False]] # 17
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2, [256, False]] # 20 (P3/8-small)
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2, [256, False]] # 20 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 17], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
|
||||
- [[-1, 17], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 14], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2, [768, False]] # 26 (P5/32-large)
|
||||
- [[-1, 14], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2, [768, False]] # 26 (P5/32-large)
|
||||
|
||||
- [-1, 1, Conv, [768, 3, 2]]
|
||||
- [[-1, 11], 1, Concat, [1]] # cat head P6
|
||||
- [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
|
||||
- [[-1, 11], 1, Concat, [1]] # cat head P6
|
||||
- [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
|
||||
|
||||
- [[20, 23, 26, 29], 1, Segment, [nc, 32, 256]] # Pose(P3, P4, P5, P6)
|
||||
- [[20, 23, 26, 29], 1, Segment, [nc, 32, 256]] # Pose(P3, P4, P5, P6)
|
||||
|
@ -2,7 +2,7 @@
|
||||
# YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024]
|
||||
@ -14,33 +14,33 @@ scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will c
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
|
||||
|
||||
- [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
|
||||
- [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
|
||||
|
48
ultralytics/cfg/models/v8/yolov8-world.yaml
Normal file
48
ultralytics/cfg/models/v8/yolov8-world.yaml
Normal file
@ -0,0 +1,48 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# YOLOv8-World object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/tasks/detect
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
|
||||
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
|
||||
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
|
||||
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
|
||||
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
|
||||
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2fAttn, [512, 256, 8]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2fAttn, [256, 128, 4]] # 15 (P3/8-small)
|
||||
|
||||
- [[15, 12, 9], 1, ImagePoolingAttn, [256]] # 16 (P3/8-small)
|
||||
|
||||
- [15, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2fAttn, [512, 256, 8]] # 19 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2fAttn, [1024, 512, 16]] # 22 (P5/32-large)
|
||||
|
||||
- [[15, 19, 22], 1, WorldDetect, [nc, 512, False]] # Detect(P3, P4, P5)
|
46
ultralytics/cfg/models/v8/yolov8-worldv2.yaml
Normal file
46
ultralytics/cfg/models/v8/yolov8-worldv2.yaml
Normal file
@ -0,0 +1,46 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# YOLOv8-World-v2 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/tasks/detect
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
|
||||
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
|
||||
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
|
||||
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
|
||||
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
|
||||
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2fAttn, [512, 256, 8]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2fAttn, [256, 128, 4]] # 15 (P3/8-small)
|
||||
|
||||
- [15, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2fAttn, [512, 256, 8]] # 18 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2fAttn, [1024, 512, 16]] # 21 (P5/32-large)
|
||||
|
||||
- [[15, 18, 21], 1, WorldDetect, [nc, 512, True]] # Detect(P3, P4, P5)
|
@ -2,45 +2,45 @@
|
||||
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
nc: 80 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
|
||||
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
|
||||
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
|
||||
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
|
||||
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
|
||||
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
|
||||
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
|
||||
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
|
||||
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
|
||||
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
|
||||
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
|
||||
|
||||
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
||||
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
||||
|
Reference in New Issue
Block a user