add yolo v10 and modify pipeline
This commit is contained in:
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
|
||||
# Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/
|
||||
# Example usage: yolo train data=Argoverse.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── Argoverse ← downloads here (31.5 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/Argoverse # dataset root dir
|
||||
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
|
||||
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
|
||||
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
|
||||
path: ../datasets/Argoverse # dataset root dir
|
||||
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
|
||||
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
|
||||
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -24,7 +24,6 @@ names:
|
||||
6: traffic_light
|
||||
7: stop_sign
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import json
|
||||
@ -64,7 +63,9 @@ download: |
|
||||
# Download 'https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip' (deprecated S3 link)
|
||||
dir = Path(yaml['path']) # dataset root dir
|
||||
urls = ['https://drive.google.com/file/d/1st9qW3BeIwQsnR0t8mRpvbsSWIo16ACi/view?usp=drive_link']
|
||||
download(urls, dir=dir)
|
||||
print("\n\nWARNING: Argoverse dataset MUST be downloaded manually, autodownload will NOT work.")
|
||||
print(f"WARNING: Manually download Argoverse dataset '{urls[0]}' to '{dir}' and re-run your command.\n\n")
|
||||
# download(urls, dir=dir)
|
||||
|
||||
# Convert
|
||||
annotations_dir = 'Argoverse-HD/annotations/'
|
||||
|
@ -1,18 +1,19 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# DOTA 2.0 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
|
||||
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv2.yaml
|
||||
# DOTA 1.5 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
|
||||
# Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
|
||||
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.5.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── dota2 ← downloads here (2GB)
|
||||
# └── dota1.5 ← downloads here (2GB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/DOTAv2 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1411 images
|
||||
val: images/val # val images (relative to 'path') 458 images
|
||||
test: images/test # test images (optional) 937 images
|
||||
path: ../datasets/DOTAv1.5 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1411 images
|
||||
val: images/val # val images (relative to 'path') 458 images
|
||||
test: images/test # test images (optional) 937 images
|
||||
|
||||
# Classes for DOTA 2.0
|
||||
# Classes for DOTA 1.5
|
||||
names:
|
||||
0: plane
|
||||
1: ship
|
||||
@ -30,8 +31,6 @@ names:
|
||||
13: soccer ball field
|
||||
14: swimming pool
|
||||
15: container crane
|
||||
16: airport
|
||||
17: helipad
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/DOTAv2.zip
|
||||
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/DOTAv1.5.zip
|
35
ultralytics/cfg/datasets/DOTAv1.yaml
Normal file
35
ultralytics/cfg/datasets/DOTAv1.yaml
Normal file
@ -0,0 +1,35 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# DOTA 1.0 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
|
||||
# Documentation: https://docs.ultralytics.com/datasets/obb/dota-v2/
|
||||
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv1.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── dota1 ← downloads here (2GB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/DOTAv1 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1411 images
|
||||
val: images/val # val images (relative to 'path') 458 images
|
||||
test: images/test # test images (optional) 937 images
|
||||
|
||||
# Classes for DOTA 1.0
|
||||
names:
|
||||
0: plane
|
||||
1: ship
|
||||
2: storage tank
|
||||
3: baseball diamond
|
||||
4: tennis court
|
||||
5: basketball court
|
||||
6: ground track field
|
||||
7: harbor
|
||||
8: bridge
|
||||
9: large vehicle
|
||||
10: small vehicle
|
||||
11: helicopter
|
||||
12: roundabout
|
||||
13: soccer ball field
|
||||
14: swimming pool
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/DOTAv1.zip
|
@ -1,14 +1,14 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
|
||||
# Global Wheat 2020 dataset https://www.global-wheat.com/ by University of Saskatchewan
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/globalwheat2020/
|
||||
# Example usage: yolo train data=GlobalWheat2020.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── GlobalWheat2020 ← downloads here (7.0 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/GlobalWheat2020 # dataset root dir
|
||||
path: ../datasets/GlobalWheat2020 # dataset root dir
|
||||
train: # train images (relative to 'path') 3422 images
|
||||
- images/arvalis_1
|
||||
- images/arvalis_2
|
||||
@ -29,7 +29,6 @@ test: # test images (optional) 1276 images
|
||||
names:
|
||||
0: wheat_head
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
from ultralytics.utils.downloads import download
|
||||
|
@ -1,18 +1,18 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
|
||||
# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
|
||||
# Documentation: https://docs.ultralytics.com/datasets/classify/imagenet/
|
||||
# Example usage: yolo train task=classify data=imagenet
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── imagenet ← downloads here (144 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/imagenet # dataset root dir
|
||||
train: train # train images (relative to 'path') 1281167 images
|
||||
val: val # val images (relative to 'path') 50000 images
|
||||
test: # test images (optional)
|
||||
path: ../datasets/imagenet # dataset root dir
|
||||
train: train # train images (relative to 'path') 1281167 images
|
||||
val: val # val images (relative to 'path') 50000 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -2020,6 +2020,5 @@ map:
|
||||
n13133613: ear
|
||||
n15075141: toilet_tissue
|
||||
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: yolo/data/scripts/get_imagenet.sh
|
||||
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Objects365 dataset https://www.objects365.org/ by Megvii
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/objects365/
|
||||
# Example usage: yolo train data=Objects365.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/Objects365 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1742289 images
|
||||
path: ../datasets/Objects365 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1742289 images
|
||||
val: images/val # val images (relative to 'path') 80000 images
|
||||
test: # test images (optional)
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -381,7 +381,6 @@ names:
|
||||
363: Curling
|
||||
364: Table Tennis
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
from tqdm import tqdm
|
||||
|
@ -1,23 +1,22 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/sku-110k/
|
||||
# Example usage: yolo train data=SKU-110K.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── SKU-110K ← downloads here (13.6 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/SKU-110K # dataset root dir
|
||||
train: train.txt # train images (relative to 'path') 8219 images
|
||||
val: val.txt # val images (relative to 'path') 588 images
|
||||
test: test.txt # test images (optional) 2936 images
|
||||
path: ../datasets/SKU-110K # dataset root dir
|
||||
train: train.txt # train images (relative to 'path') 8219 images
|
||||
val: val.txt # val images (relative to 'path') 588 images
|
||||
test: test.txt # test images (optional) 2936 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: object
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import shutil
|
||||
|
@ -1,12 +1,12 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
|
||||
# Documentation: # Documentation: https://docs.ultralytics.com/datasets/detect/voc/
|
||||
# Example usage: yolo train data=VOC.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── VOC ← downloads here (2.8 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/VOC
|
||||
train: # train images (relative to 'path') 16551 images
|
||||
@ -42,7 +42,6 @@ names:
|
||||
18: train
|
||||
19: tvmonitor
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import xml.etree.ElementTree as ET
|
||||
@ -81,7 +80,7 @@ download: |
|
||||
urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
|
||||
f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
|
||||
f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
|
||||
download(urls, dir=dir / 'images', curl=True, threads=3)
|
||||
download(urls, dir=dir / 'images', curl=True, threads=3, exist_ok=True) # download and unzip over existing paths (required)
|
||||
|
||||
# Convert
|
||||
path = dir / 'images/VOCdevkit'
|
||||
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/visdrone/
|
||||
# Example usage: yolo train data=VisDrone.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── VisDrone ← downloads here (2.3 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/VisDrone # dataset root dir
|
||||
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
|
||||
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
|
||||
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
|
||||
path: ../datasets/VisDrone # dataset root dir
|
||||
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
|
||||
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
|
||||
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -26,7 +26,6 @@ names:
|
||||
8: bus
|
||||
9: motor
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import os
|
||||
|
24
ultralytics/cfg/datasets/african-wildlife.yaml
Normal file
24
ultralytics/cfg/datasets/african-wildlife.yaml
Normal file
@ -0,0 +1,24 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# African-wildlife dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/african-wildlife/
|
||||
# Example usage: yolo train data=african-wildlife.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── african-wildlife ← downloads here (100 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/african-wildlife # dataset root dir
|
||||
train: train/images # train images (relative to 'path') 1052 images
|
||||
val: valid/images # val images (relative to 'path') 225 images
|
||||
test: test/images # test images (relative to 'path') 227 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: buffalo
|
||||
1: elephant
|
||||
2: rhino
|
||||
3: zebra
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/african-wildlife.zip
|
22
ultralytics/cfg/datasets/brain-tumor.yaml
Normal file
22
ultralytics/cfg/datasets/brain-tumor.yaml
Normal file
@ -0,0 +1,22 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Brain-tumor dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/brain-tumor/
|
||||
# Example usage: yolo train data=brain-tumor.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── brain-tumor ← downloads here (4.05 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/brain-tumor # dataset root dir
|
||||
train: train/images # train images (relative to 'path') 893 images
|
||||
val: valid/images # val images (relative to 'path') 223 images
|
||||
test: # test images (relative to 'path')
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: negative
|
||||
1: positive
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/brain-tumor.zip
|
43
ultralytics/cfg/datasets/carparts-seg.yaml
Normal file
43
ultralytics/cfg/datasets/carparts-seg.yaml
Normal file
@ -0,0 +1,43 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Carparts-seg dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/segment/carparts-seg/
|
||||
# Example usage: yolo train data=carparts-seg.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── carparts-seg ← downloads here (132 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/carparts-seg # dataset root dir
|
||||
train: train/images # train images (relative to 'path') 3516 images
|
||||
val: valid/images # val images (relative to 'path') 276 images
|
||||
test: test/images # test images (relative to 'path') 401 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: back_bumper
|
||||
1: back_door
|
||||
2: back_glass
|
||||
3: back_left_door
|
||||
4: back_left_light
|
||||
5: back_light
|
||||
6: back_right_door
|
||||
7: back_right_light
|
||||
8: front_bumper
|
||||
9: front_door
|
||||
10: front_glass
|
||||
11: front_left_door
|
||||
12: front_left_light
|
||||
13: front_light
|
||||
14: front_right_door
|
||||
15: front_right_light
|
||||
16: hood
|
||||
17: left_mirror
|
||||
18: object
|
||||
19: right_mirror
|
||||
20: tailgate
|
||||
21: trunk
|
||||
22: wheel
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/carparts-seg.zip
|
@ -1,20 +1,20 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO 2017 dataset http://cocodataset.org by Microsoft
|
||||
# COCO 2017 dataset https://cocodataset.org by Microsoft
|
||||
# Documentation: https://docs.ultralytics.com/datasets/pose/coco/
|
||||
# Example usage: yolo train data=coco-pose.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco-pose ← downloads here (20.1 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco-pose # dataset root dir
|
||||
train: train2017.txt # train images (relative to 'path') 118287 images
|
||||
val: val2017.txt # val images (relative to 'path') 5000 images
|
||||
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
||||
path: ../datasets/coco-pose # dataset root dir
|
||||
train: train2017.txt # train images (relative to 'path') 118287 images
|
||||
val: val2017.txt # val images (relative to 'path') 5000 images
|
||||
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
||||
|
||||
# Keypoints
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
|
||||
|
||||
# Classes
|
||||
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO 2017 dataset http://cocodataset.org by Microsoft
|
||||
# COCO 2017 dataset https://cocodataset.org by Microsoft
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
|
||||
# Example usage: yolo train data=coco.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco ← downloads here (20.1 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco # dataset root dir
|
||||
train: train2017.txt # train images (relative to 'path') 118287 images
|
||||
val: val2017.txt # val images (relative to 'path') 5000 images
|
||||
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
||||
path: ../datasets/coco # dataset root dir
|
||||
train: train2017.txt # train images (relative to 'path') 118287 images
|
||||
val: val2017.txt # val images (relative to 'path') 5000 images
|
||||
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -96,7 +96,6 @@ names:
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: |
|
||||
from ultralytics.utils.downloads import download
|
||||
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/segment/coco/
|
||||
# Example usage: yolo train data=coco128.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco128-seg ← downloads here (7 MB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco128-seg # dataset root dir
|
||||
train: images/train2017 # train images (relative to 'path') 128 images
|
||||
val: images/train2017 # val images (relative to 'path') 128 images
|
||||
test: # test images (optional)
|
||||
path: ../datasets/coco128-seg # dataset root dir
|
||||
train: images/train2017 # train images (relative to 'path') 128 images
|
||||
val: images/train2017 # val images (relative to 'path') 128 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -96,6 +96,5 @@ names:
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/coco128-seg.zip
|
||||
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
|
||||
# Example usage: yolo train data=coco128.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco128 ← downloads here (7 MB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco128 # dataset root dir
|
||||
train: images/train2017 # train images (relative to 'path') 128 images
|
||||
val: images/train2017 # val images (relative to 'path') 128 images
|
||||
test: # test images (optional)
|
||||
path: ../datasets/coco128 # dataset root dir
|
||||
train: images/train2017 # train images (relative to 'path') 128 images
|
||||
val: images/train2017 # val images (relative to 'path') 128 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -96,6 +96,5 @@ names:
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/coco128.zip
|
||||
|
@ -1,20 +1,20 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
|
||||
# Example usage: yolo train data=coco8-pose.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco8-pose ← downloads here (1 MB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco8-pose # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
path: ../datasets/coco8-pose # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Keypoints
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
|
||||
|
||||
# Classes
|
||||
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/segment/coco8-seg/
|
||||
# Example usage: yolo train data=coco8-seg.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco8-seg ← downloads here (1 MB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco8-seg # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
path: ../datasets/coco8-seg # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -96,6 +96,5 @@ names:
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/coco8-seg.zip
|
||||
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/coco8/
|
||||
# Example usage: yolo train data=coco8.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── coco8 ← downloads here (1 MB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/coco8 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
path: ../datasets/coco8 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -96,6 +96,5 @@ names:
|
||||
78: hair drier
|
||||
79: toothbrush
|
||||
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/coco8.zip
|
||||
|
21
ultralytics/cfg/datasets/crack-seg.yaml
Normal file
21
ultralytics/cfg/datasets/crack-seg.yaml
Normal file
@ -0,0 +1,21 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Crack-seg dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/segment/crack-seg/
|
||||
# Example usage: yolo train data=crack-seg.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── crack-seg ← downloads here (91.2 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/crack-seg # dataset root dir
|
||||
train: train/images # train images (relative to 'path') 3717 images
|
||||
val: valid/images # val images (relative to 'path') 112 images
|
||||
test: test/images # test images (relative to 'path') 200 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: crack
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/crack-seg.zip
|
34
ultralytics/cfg/datasets/dota8.yaml
Normal file
34
ultralytics/cfg/datasets/dota8.yaml
Normal file
@ -0,0 +1,34 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# DOTA8 dataset 8 images from split DOTAv1 dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/obb/dota8/
|
||||
# Example usage: yolo train model=yolov8n-obb.pt data=dota8.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── dota8 ← downloads here (1MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/dota8 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 4 images
|
||||
val: images/val # val images (relative to 'path') 4 images
|
||||
|
||||
# Classes for DOTA 1.0
|
||||
names:
|
||||
0: plane
|
||||
1: ship
|
||||
2: storage tank
|
||||
3: baseball diamond
|
||||
4: tennis court
|
||||
5: basketball court
|
||||
6: ground track field
|
||||
7: harbor
|
||||
8: bridge
|
||||
9: large vehicle
|
||||
10: small vehicle
|
||||
11: helicopter
|
||||
12: roundabout
|
||||
13: soccer ball field
|
||||
14: swimming pool
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/dota8.zip
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Open Images v7 dataset https://storage.googleapis.com/openimages/web/index.html by Google
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/open-images-v7/
|
||||
# Example usage: yolo train data=open-images-v7.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── open-images-v7 ← downloads here (561 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/open-images-v7 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1743042 images
|
||||
val: images/val # val images (relative to 'path') 41620 images
|
||||
test: # test images (optional)
|
||||
path: ../datasets/open-images-v7 # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1743042 images
|
||||
val: images/val # val images (relative to 'path') 41620 images
|
||||
test: # test images (optional)
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -617,7 +617,6 @@ names:
|
||||
599: Zebra
|
||||
600: Zucchini
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
from ultralytics.utils import LOGGER, SETTINGS, Path, is_ubuntu, get_ubuntu_version
|
||||
|
21
ultralytics/cfg/datasets/package-seg.yaml
Normal file
21
ultralytics/cfg/datasets/package-seg.yaml
Normal file
@ -0,0 +1,21 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Package-seg dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/segment/package-seg/
|
||||
# Example usage: yolo train data=package-seg.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── package-seg ← downloads here (102 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/package-seg # dataset root dir
|
||||
train: images/train # train images (relative to 'path') 1920 images
|
||||
val: images/val # val images (relative to 'path') 89 images
|
||||
test: test/images # test images (relative to 'path') 188 images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: package
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/package-seg.zip
|
24
ultralytics/cfg/datasets/tiger-pose.yaml
Normal file
24
ultralytics/cfg/datasets/tiger-pose.yaml
Normal file
@ -0,0 +1,24 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# Tiger Pose dataset by Ultralytics
|
||||
# Documentation: https://docs.ultralytics.com/datasets/pose/tiger-pose/
|
||||
# Example usage: yolo train data=tiger-pose.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── tiger-pose ← downloads here (75.3 MB)
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/tiger-pose # dataset root dir
|
||||
train: train # train images (relative to 'path') 210 images
|
||||
val: val # val images (relative to 'path') 53 images
|
||||
|
||||
# Keypoints
|
||||
kpt_shape: [12, 2] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
flip_idx: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
||||
|
||||
# Classes
|
||||
names:
|
||||
0: tiger
|
||||
|
||||
# Download script/URL (optional)
|
||||
download: https://ultralytics.com/assets/tiger-pose.zip
|
@ -1,17 +1,17 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
|
||||
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
|
||||
# Documentation: https://docs.ultralytics.com/datasets/detect/xview/
|
||||
# Example usage: yolo train data=xView.yaml
|
||||
# parent
|
||||
# ├── ultralytics
|
||||
# └── datasets
|
||||
# └── xView ← downloads here (20.7 GB)
|
||||
|
||||
|
||||
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||
path: ../datasets/xView # dataset root dir
|
||||
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
|
||||
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
|
||||
path: ../datasets/xView # dataset root dir
|
||||
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
|
||||
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
|
||||
|
||||
# Classes
|
||||
names:
|
||||
@ -76,7 +76,6 @@ names:
|
||||
58: Pylon
|
||||
59: Tower
|
||||
|
||||
|
||||
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||
download: |
|
||||
import json
|
||||
|
Reference in New Issue
Block a user