contrast performance evaluatation have done!
This commit is contained in:
@ -4,15 +4,13 @@ import torchvision.transforms as T
|
||||
|
||||
class Config:
|
||||
# network settings
|
||||
backbone = 'vit' # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3_small, mobilenetv3_large, mobilenet_v1, PPLCNET_x1_0, PPLCNET_x0_5, PPLCNET_x2_5]
|
||||
metric = 'softmax' # [cosface, arcface, softmax]
|
||||
backbone = 'resnet18' # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3_small, mobilenetv3_large, mobilenet_v1, PPLCNET_x1_0, PPLCNET_x0_5, PPLCNET_x2_5]
|
||||
metric = 'arcface' # [cosface, arcface]
|
||||
cbam = True
|
||||
embedding_size = 256 # 256
|
||||
embedding_size = 256
|
||||
drop_ratio = 0.5
|
||||
img_size = 224
|
||||
|
||||
teacher = 'vit' # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3_small, mobilenetv3_large, mobilenet_v1, PPLCNET_x1_0, PPLCNET_x0_5, PPLCNET_x2_5]
|
||||
student = 'resnet'
|
||||
# data preprocess
|
||||
# input_shape = [1, 128, 128]
|
||||
"""transforms.RandomCrop(size),
|
||||
@ -24,7 +22,7 @@ class Config:
|
||||
train_transform = T.Compose([
|
||||
T.ToTensor(),
|
||||
T.Resize((img_size, img_size)),
|
||||
# T.RandomCrop(img_size*4//5),
|
||||
# T.RandomCrop(img_size),
|
||||
# T.RandomHorizontalFlip(p=0.5),
|
||||
T.RandomRotation(180),
|
||||
T.ColorJitter(brightness=0.5),
|
||||
@ -39,39 +37,39 @@ class Config:
|
||||
])
|
||||
|
||||
# dataset
|
||||
train_root = './data/2250_train/train' # 初始筛选过一次的数据集
|
||||
# train_root = './data/0625_train/train'
|
||||
train_root = './data/2250_train/train' # 初始筛选过一次的数据集
|
||||
# train_root = './data/0612_train/train'
|
||||
test_root = "./data/2250_train/val/"
|
||||
# test_root = "./data/0625_train/val"
|
||||
|
||||
# test_root = "./data/0612_train/val"
|
||||
test_list = "./data/2250_train/val_pair.txt"
|
||||
test_group_json = "./data/2250_train/cross_same.json"
|
||||
# test_group_json = "./data/0625_train/cross_same.json"
|
||||
|
||||
test_group_json = "./2250_train/cross_same_0508.json"
|
||||
|
||||
|
||||
# test_list = "./data/test_data_100/val_pair.txt"
|
||||
|
||||
# training settings
|
||||
checkpoints = "checkpoints/vit_b_16_0815/" # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3]
|
||||
restore = True
|
||||
checkpoints = "checkpoints/resnet18_0613/" # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3]
|
||||
restore = False
|
||||
# restore_model = "checkpoints/renet18_2250_0315/best_resnet18_2250_0315.pth" # best_resnet18_1491_0306.pth
|
||||
restore_model = "checkpoints/vit_b_16_0730/best.pth" # best_resnet18_1491_0306.pth
|
||||
restore_model = "checkpoints/resnet18_0515/best.pth" # best_resnet18_1491_0306.pth
|
||||
|
||||
# test_model = "./checkpoints/renet18_1887_0311/best_resnet18_1887_0311.pth"
|
||||
# test_model = "checkpoints/renet18_2250_0314/best_resnet18_2250_0314.pth"
|
||||
testbackbone = 'resnet18' # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3_small, mobilenetv3_large, mobilenet_v1, PPLCNET_x1_0, PPLCNET_x0_5]
|
||||
# test_val = "./data/2250_train"
|
||||
test_val = "./data/0625_train"
|
||||
test_model = "checkpoints/resnet18_0721/best.pth"
|
||||
test_val = "D:/比对/cl"
|
||||
# test_val = "./data/test_data_100"
|
||||
test_model = "checkpoints/resnet18_0515/best.pth"
|
||||
|
||||
train_batch_size = 128 # 256
|
||||
train_batch_size = 512 # 256
|
||||
test_batch_size = 256 # 256
|
||||
|
||||
|
||||
epoch = 300
|
||||
optimizer = 'adamw' # ['sgd', 'adam', 'adamw']
|
||||
lr = 1e-3 # 1e-2
|
||||
lr_step = 10 # 10
|
||||
optimizer = 'sgd' # ['sgd', 'adam']
|
||||
lr = 1.5e-2 # 1e-2
|
||||
lr_step = 5 # 10
|
||||
lr_decay = 0.95 # 0.98
|
||||
weight_decay = 5e-4
|
||||
loss = 'focal_loss' # ['focal_loss', 'cross_entropy']
|
||||
loss = 'cross_entropy' # ['focal_loss', 'cross_entropy']
|
||||
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
|
||||
# device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
@ -79,6 +77,5 @@ class Config:
|
||||
num_workers = 4 # dataloader
|
||||
|
||||
group_test = True
|
||||
# group_test = False
|
||||
|
||||
config = Config()
|
||||
config = Config()
|
||||
|
Reference in New Issue
Block a user