add Qwen interface
This commit is contained in:
147
Qwen_agent.py
Normal file
147
Qwen_agent.py
Normal file
@ -0,0 +1,147 @@
|
||||
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
||||
from stream_pipeline import stream_pipeline
|
||||
from PIL import Image
|
||||
import torch
|
||||
import ast
|
||||
import requests
|
||||
from io import BytesIO
|
||||
|
||||
# default: Load the model on the available device(s)
|
||||
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
||||
"Qwen/Qwen2-VL-7B-Instruct",
|
||||
# torch_dtype=torch.float16,
|
||||
torch_dtype="auto",
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
# default processer
|
||||
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", attn_implementation="flash_attention_2")
|
||||
|
||||
def qwen_prompt(img_list, messages):
|
||||
# Preparation for inference
|
||||
text = processor.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
inputs = processor(
|
||||
text=[text],
|
||||
images=img_list,
|
||||
# videos=video_inputs,
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
inputs = inputs.to("cuda")
|
||||
|
||||
# Inference: Generation of the output
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=256)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_text = processor.batch_decode(
|
||||
generated_ids_trimmed, add_special_tokens=False, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
|
||||
return output_text[0]
|
||||
|
||||
def get_best_image(track_imgs):
|
||||
img_frames = []
|
||||
for i in range(len(track_imgs)):
|
||||
content = {}
|
||||
content['type'] = 'image'
|
||||
content['min_pixels'] = 224 * 224
|
||||
content['max_pixels'] = 1280 * 28 * 28
|
||||
img_frames.append(content)
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "你是一个在超市工作的chatbot,你现在需要帮助顾客找到一张质量最好的商品图像。一个好的商品图像需要满足以下条件: \
|
||||
1. 文字清晰且连贯。\
|
||||
2. 商品图案清晰可识别。\
|
||||
3. 商品可提取的描述信息丰富。\
|
||||
基于以上条件,从多张图像中筛选出最好的图像,然后以dict输出该图像的索引信息,key为'index'。"
|
||||
},
|
||||
{
|
||||
"role": "system",
|
||||
"content": img_frames,
|
||||
},
|
||||
]
|
||||
|
||||
output_text = qwen_prompt(track_imgs, messages)
|
||||
output_dict = ast.literal_eval(output_text.strip('```python\n'))
|
||||
best_img = track_imgs[output_dict['index'] - 1]
|
||||
|
||||
return best_img
|
||||
|
||||
def get_product_description(std_img, track_imgs):
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "你是一个在超市工作的chatbot,你现在需要提取商品的信息,信息需要按照以下python dict的格式输出: \
|
||||
{\
|
||||
'Text': 商品中提取出的文字信息, \
|
||||
'Color': 商品的颜色, \
|
||||
'Shape': 商品的形状, \
|
||||
'Material': 商品的材质, \
|
||||
'Category': 商品的类别, \
|
||||
'is_Same': 如果比对的两件商品的['Text', 'Color', 'Shape', 'Material', 'Category']属性中至少有3个相同则输出True,\
|
||||
否则输出False, \
|
||||
} \
|
||||
"
|
||||
},
|
||||
{
|
||||
"role": "system",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"min_pixels": 224 * 224,
|
||||
"max_pixels": 1280 * 28 * 28,
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
"role": "system",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"min_pixels": 224 * 224,
|
||||
"max_pixels": 1280 * 28 * 28,
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "以python dict的形式输出第二张图像的比对信息。"
|
||||
}
|
||||
]
|
||||
best_img = get_best_image(track_imgs)
|
||||
img_list = [std_img, best_img]
|
||||
|
||||
output_text = qwen_prompt(img_list, messages)
|
||||
contrast_pair = ast.literal_eval(output_text.strip('```python\n'))
|
||||
|
||||
return contrast_pair
|
||||
|
||||
def main():
|
||||
# sample input dict
|
||||
stream_dict = {
|
||||
"goodsName" : "优诺优丝黄桃果粒风味发酵乳",
|
||||
"measureProperty" : 0,
|
||||
"qty" : 1,
|
||||
"price" : 25.9,
|
||||
"weight": 560, # 单位克
|
||||
"barcode": "6931806801024",
|
||||
"video" : "https://ieemoo-ai.obs.cn-east-3.myhuaweicloud.com/videos/20231009/04/04_20231009-082149_21f2ca35-f2c2-4386-8497-3e7a3b407f03_4901872831197.mp4",
|
||||
"goodsPic" : "https://ieemoo-storage.obs.cn-east-3.myhuaweicloud.com/lhpic/6931806801024.jpg",
|
||||
"measureUnit" : "组",
|
||||
"goodsSpec" : "405g"
|
||||
}
|
||||
|
||||
track_imgs = stream_pipeline(stream_dict)
|
||||
# std_img = Image.open(stream_dict['goodsPic'])
|
||||
response = requests.get(stream_dict['goodsPic'])
|
||||
std_img = Image.open(BytesIO(response.content))
|
||||
description_dict = get_product_description(std_img, track_imgs)
|
||||
print(description_dict)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user