update
This commit is contained in:
301
event_time_specify.py
Normal file
301
event_time_specify.py
Normal file
@ -0,0 +1,301 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Thu Oct 10 11:01:39 2024
|
||||
|
||||
@author: ym
|
||||
"""
|
||||
import os
|
||||
import numpy as np
|
||||
# from matplotlib.pylab import mpl
|
||||
# mpl.use('Qt5Agg')
|
||||
import matplotlib.pyplot as plt
|
||||
from move_detect import MoveDetect
|
||||
|
||||
|
||||
import sys
|
||||
sys.path.append(r"D:\DetectTracking")
|
||||
|
||||
# from tracking.utils.read_data import extract_data, read_deletedBarcode_file, read_tracking_output, read_weight_timeConsuming
|
||||
|
||||
|
||||
from tracking.utils.read_data import read_weight_timeConsuming
|
||||
|
||||
def str_to_float_arr(s):
|
||||
# 移除字符串末尾的逗号(如果存在)
|
||||
if s.endswith(','):
|
||||
s = s[:-1]
|
||||
|
||||
# 使用split()方法分割字符串,然后将每个元素转化为float
|
||||
float_array = [float(x) for x in s.split(",")]
|
||||
return float_array
|
||||
|
||||
def find_samebox_in_array(arr, target):
|
||||
|
||||
for i, st in enumerate(arr):
|
||||
if st[:4] == target[:4]:
|
||||
return i
|
||||
return -1
|
||||
|
||||
def array2frame(bboxes):
|
||||
frameID = np.sort(np.unique(bboxes[:, 7].astype(int)))
|
||||
# frame_ids = bboxes[:, frameID].astype(int)
|
||||
fboxes, ttamps = [], []
|
||||
for fid in frameID:
|
||||
idx = np.where(bboxes[:, 7] == fid)[0]
|
||||
box = bboxes[idx, :]
|
||||
|
||||
fboxes.append(box)
|
||||
ttamps.append(int(box[0, 9]))
|
||||
|
||||
frameTstamp = np.concatenate((frameID[:,None], np.array(ttamps)[:,None]), axis=1)
|
||||
|
||||
return fboxes, frameTstamp
|
||||
|
||||
|
||||
def extract_data_1(datapath):
|
||||
'''
|
||||
要求每一帧(包括最后一帧)输出数据后有一空行作为分割行,该分割行为标志行
|
||||
'''
|
||||
|
||||
trackerboxes = np.empty((0, 10), dtype=np.float64)
|
||||
trackerfeats = np.empty((0, 256), dtype=np.float64)
|
||||
|
||||
boxes, feats, tboxes, tfeats = [], [], [], []
|
||||
timestamp = -1
|
||||
|
||||
newframe = False
|
||||
with open(datapath, 'r', encoding='utf-8') as lines:
|
||||
for line in lines:
|
||||
if line.find("CameraId")>=0:
|
||||
newframe = True
|
||||
timestamp, frameId = [int(ln.split(":")[1]) for ln in line.split(",")[1:]]
|
||||
# boxes, feats, tboxes, tfeats = [], [], [], []
|
||||
|
||||
|
||||
if line.find("box:") >= 0 and line.find("output_box:") < 0:
|
||||
line = line.strip()
|
||||
box = line[line.find("box:") + 4:].strip()
|
||||
# if len(box)==6:
|
||||
boxes.append(str_to_float_arr(box))
|
||||
|
||||
if line.find("feat:") >= 0:
|
||||
line = line.strip()
|
||||
feat = line[line.find("feat:") + 5:].strip()
|
||||
# if len(feat)==256:
|
||||
feats.append(str_to_float_arr(feat))
|
||||
|
||||
if line.find("output_box:") >= 0:
|
||||
line = line.strip()
|
||||
# 确保 boxes 和 feats 一一对应,并可以保证 tboxes 和 tfeats 一一对应
|
||||
if len(boxes)==0 or len(boxes)!=len(feats):
|
||||
continue
|
||||
|
||||
box = str_to_float_arr(line[line.find("output_box:") + 11:].strip())
|
||||
|
||||
box.append(timestamp)
|
||||
index = find_samebox_in_array(boxes, box)
|
||||
if index >= 0:
|
||||
tboxes.append(box) # 去掉'output_box:'并去除可能的空白字符
|
||||
|
||||
# feat_f = str_to_float_arr(input_feats[index])
|
||||
feat_f = feats[index]
|
||||
norm_f = np.linalg.norm(feat_f)
|
||||
feat_f = feat_f / norm_f
|
||||
tfeats.append(feat_f)
|
||||
|
||||
'''标志行(空行)判断'''
|
||||
condt = line.find("timestamp")<0 and line.find("box:")<0 and line.find("feat:")<0
|
||||
if condt and newframe:
|
||||
if len(tboxes) and len(tfeats):
|
||||
trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)))
|
||||
trackerfeats = np.concatenate((trackerfeats, np.array(tfeats)))
|
||||
|
||||
timestamp = -1
|
||||
boxes, feats, tboxes, tfeats = [], [], [], []
|
||||
newframe = False
|
||||
|
||||
return trackerboxes, trackerfeats
|
||||
|
||||
|
||||
def devide_motion_state(tboxes, width):
|
||||
'''frameTstamp: 用于标记当前相机视野内用购物车运动状态变化'''
|
||||
|
||||
periods = []
|
||||
if len(tboxes) < width:
|
||||
return periods
|
||||
|
||||
fboxes, frameTstamp = array2frame(tboxes)
|
||||
|
||||
fnum = len(frameTstamp)
|
||||
if fnum < width: return periods
|
||||
|
||||
state = np.zeros((fnum, 2), dtype=np.int64)
|
||||
frameState = np.concatenate((frameTstamp, state), axis = 1).astype(np.int64)
|
||||
|
||||
mtrackFid = {}
|
||||
'''frameState 标记由图像判断的购物车状态:0: 静止,1: 运动'''
|
||||
for idx in range(width, fnum+1):
|
||||
lboxes = np.concatenate(fboxes[idx-width:idx], axis = 0)
|
||||
|
||||
md = MoveDetect(lboxes)
|
||||
md.classify()
|
||||
|
||||
# if idx==60:
|
||||
# print('a')
|
||||
|
||||
## track.during 二元素组, 表征在该时间片段内,轨迹 track 的起止时间,数值用 boxes[:, 7]
|
||||
for track in md.track_motion:
|
||||
if track.cls == 0: continue
|
||||
|
||||
|
||||
|
||||
f1, f2 = track.during
|
||||
|
||||
|
||||
|
||||
idx1 = set(np.where(frameState[:,0] >= f1)[0])
|
||||
idx2 = set(np.where(frameState[:,0] <= f2)[0])
|
||||
idx3 = list(idx1.intersection(idx2))
|
||||
|
||||
if track.tid not in mtrackFid:
|
||||
mtrackFid[track.tid] = set(idx3)
|
||||
else:
|
||||
mtrackFid[track.tid] = mtrackFid[track.tid].union(set(idx3))
|
||||
|
||||
frameState[idx-1, 3] = 1
|
||||
frameState[idx3, 2] = 1
|
||||
|
||||
'''状态变化输出'''
|
||||
|
||||
for tid, fid in mtrackFid.items():
|
||||
fstate = np.zeros((fnum, 1), dtype=np.int64)
|
||||
fstate[list(fid), 0] = tid
|
||||
|
||||
frameState = np.concatenate((frameState, fstate), axis = 1).astype(np.int64)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
return frameState
|
||||
|
||||
|
||||
def state_measure(periods, weights, spath=None):
|
||||
'''两种状态:static、motion,
|
||||
(t0, t1)
|
||||
t0: static ----> motion
|
||||
t1: motion ----> static
|
||||
'''
|
||||
|
||||
PrevState = 'static'
|
||||
CuurState = 'static'
|
||||
|
||||
camtype_0, frstate_0 = periods[0]
|
||||
camtype_1, frstate_1 = periods[1]
|
||||
|
||||
'''计算总时间区间: tmin, tmax, during'''
|
||||
tmin_w, tmax_w = np.min(weights[:, 0]), np.max(weights[:, 0])
|
||||
tmin_0, tmax_0 = np.min(frstate_0[:, 1]), np.max(frstate_0[:, 1])
|
||||
tmin_1, tmax_1 = np.min(frstate_1[:, 1]), np.max(frstate_1[:, 1])
|
||||
|
||||
tmin = min([tmin_w, tmin_0, tmin_1])
|
||||
tmax = max([tmax_w, tmax_0, tmax_1])
|
||||
|
||||
# for ctype, tboxes, _ in tracker_boxes:
|
||||
# t_min, t_max = np.min(tboxes[:, 9]), np.max(tboxes[:, 9])
|
||||
# if t_min<tmin:
|
||||
# tmin = t_min
|
||||
# if t_max>tmax:
|
||||
# tmax = t_max
|
||||
# during = tmax - tmin
|
||||
|
||||
|
||||
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(3, 1)
|
||||
|
||||
ax1.plot(weights[:, 0] - tmin, weights[:, 1], 'bo-', linewidth=1, markersize=4)
|
||||
# ax1.set_xlim([0, during])
|
||||
ax1.set_title('Weight (g)')
|
||||
|
||||
ax2.plot(frstate_0[:, 1] - tmin, frstate_0[:, 2], 'rx-', linewidth=1, markersize=8)
|
||||
ax2.plot(frstate_0[:, 1] - tmin, frstate_0[:, 3], 'bo-', linewidth=1, markersize=4)
|
||||
# ax2.set_xlim([0, during])
|
||||
ax2.set_title(f'Camera: {int(camtype_0)}')
|
||||
|
||||
ax3.plot(frstate_1[:, 1] - tmin, frstate_1[:, 2], 'rx-', linewidth=1, markersize=8)
|
||||
ax3.plot(frstate_1[:, 1] - tmin, frstate_1[:, 3], 'bo-', linewidth=1, markersize=4)
|
||||
ax3.set_title(f'Camera: {int(camtype_1)}')
|
||||
|
||||
if spath:
|
||||
plt.savefig(spath)
|
||||
plt.show()
|
||||
|
||||
def read_yolo_weight_data(eventdir):
|
||||
filepaths = []
|
||||
for filename in os.listdir(eventdir):
|
||||
file, ext = os.path.splitext(filename)
|
||||
if ext =='.data':
|
||||
filepath = os.path.join(eventdir, filename)
|
||||
filepaths.append(filepath)
|
||||
|
||||
if len(filepaths) != 5:
|
||||
return
|
||||
|
||||
tracker_boxes = []
|
||||
WeightDict, SensorDict, ProcessTimeDict = {}, {}, {}
|
||||
for filepath in filepaths:
|
||||
filename = os.path.basename(filepath)
|
||||
|
||||
if filename.find('_track.data')>0:
|
||||
CamerType = filename.split('_')[0]
|
||||
trackerboxes, trackerfeats = extract_data_1(filepath)
|
||||
tracker_boxes.append((CamerType, trackerboxes, trackerfeats))
|
||||
|
||||
if filename.find('process.data')==0:
|
||||
WeightDict, SensorDict, ProcessTimeDict = read_weight_timeConsuming(filepath)
|
||||
|
||||
'''====================重力信号处理===================='''
|
||||
weights = [(float(t), w) for t, w in WeightDict.items()]
|
||||
weights = np.array(weights)
|
||||
|
||||
return tracker_boxes, weights
|
||||
|
||||
|
||||
def main():
|
||||
eventdir = r"\\192.168.1.28\share\测试_202406\0819\images\20240817-192549-6940120c-634c-481b-97a6-65042729f86b_null"
|
||||
|
||||
tracker_boxes, weights = read_yolo_weight_data(eventdir)
|
||||
|
||||
'''====================图像运动分析===================='''
|
||||
win_width = 12
|
||||
periods = []
|
||||
for ctype, tboxes, _ in tracker_boxes:
|
||||
period = devide_motion_state(tboxes, win_width)
|
||||
|
||||
periods.append((ctype, period))
|
||||
print('done!')
|
||||
|
||||
'''===============重力、图像信息融合==================='''
|
||||
state_measure(periods, weights)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user