From 390c5d2d9432710650e3246eb6c15b8532aa437e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E7=8E=8B=E5=BA=86=E5=88=9A?= Date: Fri, 4 Oct 2024 12:12:44 +0800 Subject: [PATCH] guoqing bakeup --- __pycache__/track_reid.cpython-39.pyc | Bin 0 -> 16793 bytes contrast/__init__.py | 7 + .../__pycache__/one2n_contrast.cpython-39.pyc | Bin 0 -> 9186 bytes contrast/{test_ori.py => feat_inference.py} | 6 + {tracking => contrast}/feat_select.py | 6 +- contrast/feat_similar.py | 161 ++++++++++---- .../one2n_contrast.py | 3 +- contrast/one2one_contrast.py | 111 +++++----- contrast/one2one_onsite.py | 84 +++++--- contrast/result/pickle/20240911_183903.txt | 202 ++++++++++++++++++ .../result/pickle/20240911_183903_ft16.txt | 202 ++++++++++++++++++ .../result/pickle/20240911_183903_uint8.txt | 202 ++++++++++++++++++ contrast/utils/__init__.py | 7 + contrast/utils/barcode_set_operate.py | 83 +++++++ contrast/{ => utils}/write_feature_json.py | 10 +- contrast/说明文档.txt | 0 pipeline.py | 95 ++++++++ track_reid.py | 176 ++++++++++++++- tracking/{ => deprecated}/contrast_one2one.py | 1 + tracking/{ => deprecated}/eventsmatch.py | 5 +- .../__pycache__/dotracks.cpython-39.pyc | Bin 13714 -> 13782 bytes .../__pycache__/dotracks_back.cpython-39.pyc | Bin 6055 -> 6064 bytes .../__pycache__/dotracks_front.cpython-39.pyc | Bin 4932 -> 4874 bytes .../__pycache__/track_back.cpython-39.pyc | Bin 6232 -> 6390 bytes tracking/dotrack/dotracks.py | 15 +- tracking/dotrack/dotracks_back.py | 2 +- tracking/dotrack/dotracks_front.py | 2 +- tracking/dotrack/track_back.py | 10 +- tracking/module_analysis.py | 36 ++-- tracking/tracking_test.py | 15 +- .../utils/__pycache__/plotting.cpython-39.pyc | Bin 12903 -> 12899 bytes .../__pycache__/read_data.cpython-39.pyc | Bin 7815 -> 7829 bytes tracking/utils/plotting.py | 2 +- tracking/utils/read_data.py | 13 +- tracking/utils/videot.py | 7 +- tracking/说明文档.txt | 36 ---- 说明文档.txt | 129 +++++++++++ 37 files changed, 1409 insertions(+), 219 deletions(-) create mode 100644 __pycache__/track_reid.cpython-39.pyc create mode 100644 contrast/__init__.py create mode 100644 contrast/__pycache__/one2n_contrast.cpython-39.pyc rename contrast/{test_ori.py => feat_inference.py} (99%) rename {tracking => contrast}/feat_select.py (98%) rename tracking/contrast_analysis.py => contrast/one2n_contrast.py (99%) create mode 100644 contrast/result/pickle/20240911_183903.txt create mode 100644 contrast/result/pickle/20240911_183903_ft16.txt create mode 100644 contrast/result/pickle/20240911_183903_uint8.txt create mode 100644 contrast/utils/__init__.py create mode 100644 contrast/utils/barcode_set_operate.py rename contrast/{ => utils}/write_feature_json.py (98%) create mode 100644 contrast/说明文档.txt create mode 100644 pipeline.py rename tracking/{ => deprecated}/contrast_one2one.py (99%) rename tracking/{ => deprecated}/eventsmatch.py (99%) create mode 100644 说明文档.txt diff --git a/__pycache__/track_reid.cpython-39.pyc b/__pycache__/track_reid.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c859070e92a1e5dac2d06a1f7f4639f9e1825dc3 GIT binary patch literal 16793 zcmbt*33Oapde+-&QE9Ox%d2GhS(0s)tlf)jSzctzvgJiq%W8Z4+V1L7-6yHawfVj$ z*(z?GOh(H-~Ywy>mv&Oe)iIng+KbNqWmsJs{c$xPUGi%SyL3I zSPD~_mR2oQJ~c~|Pui>3vO=m~Cv1gfUX2xz&swWiKI^PHJ7m|d zsilTTinYn!lxk$^4#jG+o9(7G)efXKuc-XT=~-&=(;lg+f;u`Kw@<>}# zttN0Z(%UlIt?jbaKzc`Jr?oTFYPDwCthUT9YgeY-YL|Jz^zMvlnVCJ-o=k_;k?FKL zGhJ3!X0Nq3v(MU>*>CO7bX(n-s1?ohSUs5o)`3i~)tl+F`egl3x<4~u4P*wbK^YIH zhcd&~aOR+OP{wQ0hcbt)!ap4?BSP71qo8@SL`{TLyiBWeQ`~(X6$Ku zMwZjADbd0BuZI*RGP|5LZ(hB8b>*$z0YVmddE$IaaG-15BLYu>Zx6Y)&1>A2jEXOLsNiT+6Bc?UeqKGVr9^Mvh; zMoj#5nfXxcYxmYbK{e@M9x z&q`(%`&0SF56?tur!R?5#vH=y&*TsN5av?6pNzSa;I^IpNZ#nVU&2|+xu2|seB50c z_~-`E!uqUO{bUWKlaAZ(-giH$jZTwFn7M`Wbo~Elr93r1tfh@s%7s2zGyA2udT2K7 z|L|sL*?dCYORk%DMh6B~bIa~>|GYh5EhdjG4&8B{yO2O@o$G7y6SC*7lLvSEems*; z+x>}LW*}p;WSnNNWIsE1ZKl_pox1{hVQy}wywo?=_(G0n;_mJ=ZeO`g<*AxockS^{I(UByu?yXH)Ww_cl=&s|BYCofVE(D--;)Jlfy|FJC=> z{@kn=n&G*HWZL#3i6uL6Cnm!Uei+AS%t;n(uWmgKR`j2^{hq zTdk)jR))QXWEM?RR*W`KZ*w-6jb-BZW6p9u&uzznYT`xmJc$BvzKGsAi8!P)pSy26 z-X`!#=CQ7@K+!z+YVNPzUmd=`dT%MJdG(H+hSm~e_DV8gdo4~T&fQo=&yf;Fv6}I0 zHs{8%m3TqFb5X+!oRJM|n{sU)pHJJ@lC(8W$1}E*kAqpwYCMyUr6D@6UiKx10fI~z z7>3SVox65*cFwCkb93(89H#-{7^Mi~@p~>s9mHyu;#n5U=Nuc6`dNEwVk(Qq7Qh_| z=t*`VxtIW!sQfh|1ocfhi=XpdRZ(1}qzdJcdP^^AMZIV&D#ZYPLHt6lhFo0$eUQFC zp*&P?A1a20D#A=*+AG?EwnHfyu96BoQj0Zikg1}E(8QWX&oQN(qL)*2q=bad^z91r zjdH3XQ?+txpqv^QQv{VlT~MUHB6-RfYQCbO2cQecFGfVfk8MyEd_||cQuvWltaWQj z5mAdi)`>u=RzwKVxOHw#3OI;`?&uFy-X`i&4V1#d57g2o)T+xiRHvbC2zBeIF5X|? zrl54=R-mmr8t-+RQq3X+JXG^QD~3c6B|}t_qfP5x zK-4dgwq85UG04hegNO{#Y>?4s=%a+wC>j=PFPgO-)2W4(bSv!0R2jkhlbB@(uXXb6jlG*Zh z5s)X47f3o-mAr>o8Z7R{y+C$3gPsIeB#&q#iqLKaK)jAu98bOAsW&_|hPTKpI##{k z1MDK$bsR6W9#ENOxaoOrQL!OU2lWCn(+e-yad#QJjAvl4K{<-Qt?=j2kte$+MsNAs zs$9Y7^DVh{W88*bkIrq{*hysP&Y_lb8bnbWRYU%7Rky3n_}_~E9?euET10D9TeJo( zg46~zq6QJd6RBau8t~t&@oV70_kldM{AuY2@RQ4b8Ua^vvAn;c6*X5|P?CzP3uR6H zs`{#0)G>Jt*AM`un2csIAT*(;uoSU`v0O3HgTg2UMUW=?-ELuEx*3HDc}PuVlWsDe z#(rwb7q+=$V*JhAdMi$g3pM4(w_3j#WE1 zJAU@kx!Ks2@foa%g+(j8-f=#KN?xcOl>_UOSxT=@;#FhoW$z-%X#i1z5v>{HSBEjG z)3}9{LS$Xz%)5nJnxX?fM1E4sm$S}*KP^4ozMuD$LRbHQWD4>40f=w_{Te6>qo2AS z)gFHu>zTg@_TQ&g73H^1eg8MVO@H4x_4s`(^GV)~)F(}{y+kgN8yY?;>n2E=>wlLK zAk&nb7r%iS;wm)mMO8G`DY@-JEzu#M)+xnyR}&HBL};dnh-ekN#7?F?2o!gV-6;dV z0DeJT(UhWD+*9npmLC+RKVO(p>~!e>L5k=QZ7hI#T})Y2MP~~(bpMH(dyD(PrABl( z5AlrfFES&miB1+=)I{(tbyi`a2egUTVx#L^(^weCz<#%G4cof^ThNQ$ZhfkO)qrkd z5zN+TQYrR`E*xXV?ccr?C>|*G7W<0*#R1Vx^AXDGscusa6=0>R9~)EvvDHVvE=HiB;#-la_pijWA4Cee%|wCO?cLu>z_y0*JZ49bIEzx|n8T5+g2Ec#0Ac;ADV z59|Hg-HIKecu2q)M(@rV=^);rY*j{-;(%+4gH%IoLybL<%VzZYFr+k$1JK|vxqGVX zh~dhS-Queg;vl4{mpZ`VnLMZoonlz#Yo)G7N@*|pbwunh?Gs1D!ADwg1g(sq#jrG8 zeGA9nAB(Qkelb#R14k=(bc=&1rQz+47LQ>@jN*43zcIY~ddaP%*vMV)7RsF{o)n{{ zeQs2oTvNqSabky(#9F|}9j~O0h!cJ*RI{8rR>?i~!Q6-X-Jlp1$Hf@i_7z?9ur*`D99DV{2xE{+$^6wjh}r`b-tv(CT4 zTC)wT4V+FBAGYgFUF<>Z%o>!kZAwuW+fnL!Ov!E+I}rKct6g z3*QM~tlGsHDNBUhUY`rAThof?vi+4ZXJi>2rO(JRXt!J@;`XxLepnn%^@&qrLY!mf z1FQ$U`|ILxsb9{kfz)7WNE~{kLei7P^P(NAfyQl^?ZG=4{3~LTb%-wXvGYwRUBwI8 zW`(9PVl(;A^L1iy>AKtUPJz&gM2u-A=UE z^iSN=ubl?Jp#@LNI9_Cqpqa#d(KGxQcz9u`yAD};_%><+N3z22P(~n2NYK;rF0Z4+ zASDLx#d&5q?*$=!HK$Umx3~#1jjSUU}s=$wjWfpah@1UYB6c6y+a+dK{N+2zp zPf%)bISc+9inBA13rpMyM${ zr?^cFGDPG~;`a{y;uZ5u9rAs3 z9hx;QGcu*fU4&mH7MN*^ghf1{j{7no5uOZbN${UfGS46r5xRnql)j!wJDv{9jTey9 zn*TVls+Yq<9grgk#U5P2UUo@e$OC@f^VFqh5yfVL2|$QWcD<)I{|xv!e;!2HA6A=n z{D21QbORV;tKOwH0Q(VMYytjj23`y!)~!cWQ|$*mq&KT!DyeM+b{q@00F^YLbhF-I z_!zSd+}hO+wM}c*cd9*Vm(~If_@R6YT5D8;gk-d4tx; zlB1N{u3b~NLGf! z)&TV{z%&4yt$->Qa8XcH>G1ah0f z|9`p|bIg&Wn8~%R3TDDi3FKOf7+Y}+P;4`610*{60lvD^{tVw;WgyopP69B8L?fVF zn6(4QeOT>V)wSI|0xOWGe)|VdtN|824~y*x##fk7{C^oR<`k6HQKBSENU~qfI|(Vo zm^cOHdiR^CQ5?&*p|q5^OHkQl&1?EbS-k5w=JYt$b%z*F4N7o00a&w#~JCB1YIeSRhn3jQH+ zT2Q`LI*k3|2*&q30Q-nIFU|lUUO-EL2&`EGi&p_dvUu;K;zGHNE(s8ii8Clg01;|D zX6dLnEG`0uHM6~#?KE32;ddFoE0FSf-F;6%#_8f!aj7)o9v4>uNv6bf1r%Pcq+Sry zAApQkD!CUwnETMU`#o_KVhvzjV9$_G>{oIvS;ZHMx8yklkE7CMHZ03e zpqG;ZGN=P^rP#H=`hQ8@ufA1jYV z3}bPE#=_MYcCX?~;w3tRABLR?@ly4eDFhBs4~{}G#Td)ybGFWh41Xw>97n)EdS)P&)Z^}xJDT+h3=*#*(DreQoVN^e4+ z0ml~b>T+KcIFHHfgmW2V5S^Olq&!Jv9yJOWO6g!hfed+C6hh?DL4okPYeym64~$O! zQ@|kdHui~n>+v7snnxnrsLKBlIC?>;qdIeR&6tnFU(0o524~dXB9SB!G92?P5xO|y zc_JJns`+rA0PA`f1{7a+rb}BNOuJNm8Dx^*qaY!DUH~a*qbC13iU}e`B82Ptr-{5m z)in&F#zMd3u}9v<4zVLj}bf~(?H?CpHhde^DBjGVk8k+ueGY4 zG{;NuLCC@xD8TA)2UijI<`X3B^*;jXq&gqO&!L+Qq1~gao3dhho+}S z3U&VE8|WdERH4cAqb5NmX1Y1E&@?M80?tN~XUyl)EE<#c6#gaj);C@ReUQ%SZj%Q< zfWC6~U<-)AK!D{!KpwE#k#>z_g4fC-(!9V4OL;+weH~ook#B%+7Fi)?+lY|dpGC42 zLk<6F%KaH41aEvhO$UX@PQza(@&*VNn-r;M+_6_3X<6ZanKH?8!@ol0LrgaOP0H9X z*pPvS|11butKdrHg<#}}ySPFvQO*t`WTfGbh&*kgkucw1Zr3RHFA(`Ek)J0*1{wYf zME)X?w~72Bk-tQQj4%9`h`dAOYee29@>hubRU&_l$S)K56(WC~$loARL*(m32-fpK z5Lg_Oxcm(!GuWjV-$O~^R4$p7kk}yKCNG$W0Rk=}2E+BO7jT#1GvOKJ#pfC1{>C>E zw=E#i1pfwwf0fAJB2pr9ok)(zuMzn>L@E{){&y+*>qPz@k-tymn?(Krk#7 zllc4NKc&sx-fBhsT^T!q%l|eNA188$ z$d`%y6p%e9JsDK#a$7dQ|2cIW%HvGbB*yz>5YJ=Va zQ%b|rW*Va#2ABpds2Upn4H#^s(WX%&6HE&XFk!t8c^_%Ofx)F6b=nN@htX#%+6ii7 zJypgWm}fp<&T0Cj=A0uMdSf&gjd~9*up=-m!3=~qA_s#;n16aVk;w>8ynPVkZhY&wp6+eRbNLBnOq;w2Y8ik=?{Vk5Ov8UoEQ0HV-om1>IBmp(J z(u=cf0%gvz$x6z3nR1~jWeO!OR&lw6_~okj74V#9SJ$Om3Sq=`p&Lpn41=7W3Iq5} zOJj@4W}qZbAA|WS7Iq`J)z?Xl#u(_(YMz@eY){g_yk%r~3(G$xi1B;q^}n3LUgR3}B}iK&=5fmj?X3ePFQL z-|VANo$tn~;3knhAcY`&ePIOW^XPP;t(#m9bJ=)0YL>e%{W47IRUy>ZM|*go5RidF zL_Ye+^GbSq6q+kqmr04{Qt!P&U0)xWqxiyviN<#!lX`k#Z(^CnQIfnSd(C9O z-H)#@AnL*1q2A%%gA^pkGp$NGctyJHp!X&X4o<|d(=XeFI@+d996}fe2Wo9FEo|8}{E0S1YuPnGBJO|&l z&<7>uw#sVjMjc$d6n6P_5X?iD-SBBL<&jGg@^5AeJ6O(yyQtJ~%ikrGXD!Xs^0iH2 z5K{~{Tju<#DU(LgemM_fBnei<&0+H(CLBJtf*Vw2!Zq~ut>69h;qIr>zCJ=;$eftG}J1C66n5zhu?d0^~m@KPK21 z8!UM2c75fG`F$j{ZF2iF<#lWy-R9DF7U+zG-_bhHn7w*+&I@CY1N6srX~Q^Q#Jz9U zouMelWg&c!kt@@D#3jK3Ard%IQz7X@?Q7Vlkjghxma&4YsA1K}ftUJxn6@<;3d(wL z*T$Cj>~&X-&l5TG&=Q<VTuA0@3`9{Bo?2RhKOiTLMqR=7f;`*0#--Sx@QpdiPqqH zJePxud6HW-SUM6qz?A^kg>a|G)WB6I^2#Dja#|s{kX=`39ln$1U@H-+{z`pS5~;85 zAjswOgx`7$SGz7gumD5nRg!ljI-)=W4MN&<(HF+`AwLXeh0qEA?fTc;8_E&>sg5Vt-G_?cFCz$@_);(;rGC=C9P?Z z=_ifV-w;TL7|p6B5$CwH^1#Ix1|XPA;B1meFEe|22=50E-gV{T)@tU~d+&bz{a^dS zd%yBy?|#Wwy}cV)8FF*Q(Bef#m5^c+(jc5CGs{! z2~UytGDd_966g>BGP%3LTVe~98X!XYHE^>-qmDU60EFYKTVPEr9Cg`zbdISzc3*wO5l0_XTn zSXq}gTs3`>^V1YMMMN&TXCz%ilEzmZx%@jM?(Jxi#2pR;^+CAdS`u<|03ns10TVAA z!^bM95{qinzP0x`FBFThTp||Zd#QvD)y3aN!ufREm5%hfv+6sjFQt?7(jMl|mI*ZH z+n}1LhbIuF7HD$BV&o;`h2?xaMj;99<<3OjG;+hy6Ze=^?;qy$ zQC|i=Njl0}P0MaF?ex>ypf6b9-LqkbldeoWL@a5$wd(z{WOU^5v~L)SP;M=eIwJK% zjkW6|%1Yg0k#|v<2z_jEmK6O(egp}=^FJMM(jmj2 z%XAw0Q=1GIa*bE!9~~)}Y;srGn9edJ&yesKX25dVK8YEvIAoSGcKN%7zhjicFd6vf zfvpI&si(EZKqHP5G8fb#1ykM#_ePow7(s&gX{x5-xBkBo)-=76x}IBp2ESAHBT7$& g!$zHF%6(-0-$DH!QAWbO;Ye5uw}iX#{e=F10p5#VvH$=8 literal 0 HcmV?d00001 diff --git a/contrast/__init__.py b/contrast/__init__.py new file mode 100644 index 0000000..0cd4367 --- /dev/null +++ b/contrast/__init__.py @@ -0,0 +1,7 @@ +# -*- coding: utf-8 -*- +""" +Created on Thu Sep 26 08:53:58 2024 + +@author: ym +""" + diff --git a/contrast/__pycache__/one2n_contrast.cpython-39.pyc b/contrast/__pycache__/one2n_contrast.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6b44536a38f7a7bc2b6560a52948e588c437902d GIT binary patch literal 9186 zcmb_iUvOO2dB6X5_wH(UwOYxtWE-<2Kv>3TBo_>*6bLa6&_rpYU(+33y8I@EuZKbP&)*!bdl}vTW z8meZkY<1Wg=DsLkMywIkW43u(v3A*UJAv=0JzyvC-EF7rG`?f@pq;^Y+#a&C`0lZ9 zwnyw;r&VjOowG;n-Kg!e$Lw*8-DK~v_u{+X-e=#0@6Arm-hWaP|K{vpQ?Qcuq>{g- z`4b#8@g?CDJ;%<~Yq=+jUhauzC3okYxv9ISC-0p;cu(%&svqiaO3j#etqg28?XG`#)Wsb&Y#^lcV_dQSGRuf;>P7ye)GXgn{Qsq%>!-0 zbt+EDn`o@$w%$6ub@9~3OK)twa1Ic_c;)A3Heb86`O-HwKK$FQ^Ovq(T;IC*ml)c3 z|HoH9{MN?V%bTZuhFJ}|w{l8plMj zbh2Dq$ZKKzi?v$aD|&SiMoaZdUATEYOghURK)ixo^orpa4s91~><&kNq$o;t+bPVK zD^57VBLqs=3iYPfXnJ`y9JWRA*+RE}uD66f$rqxQ`~ z-;O!d6SYm66F zg-|apyYDJu933AYxbFUDOZ6J4?0U2HnscyL=rqAYz`t03_A#uq4|ClS6pETq6Iw41>``qHywlUt z*C98!Qlm{!#t1@PrrWuE!?wCSsdl{Ixu4I=H{s2xGC((aA=5kI;c3Kwdu<{OZswrr3@5sxqJ zqh3HU++Ii?Ne=aRxZX9$o)7H16*&TE-N!!WbzEF*hUG!TvE^&OgQ7&@(fK2xAr>0O z&mBXtp!mx1OrZMeIpt(T7{2;VZOM4Dhmh}Tp*ArY>a}L|T{YBjoy6{f$(wkf0v0aS ztBnUAM(2Ovr>q{JcGGiu$zFEL_1eS(l{&b_eGrw-wEyew#3Ys!bk6NRX!j_|g7|7C& z9ksM0N9B^dIFn=SlTQ8sCb^?16g3SoH`P)6OQM$4vg$rn(0CsulIS1}%-lDM8zg?C zfAhwy@q!YlFQ|dm(aPYzH>L1{Ltw6;Pp1$(a_h5xLE_}GL z_R5u?UVa(|6?S^_?_WnR+3DxME5~5D58XYve9zQDMkfs?5cMH1OrmGw)$^O*Y-1#6 zq4oae%NKL=qF8kvw{urNx^Q*gAdj8Yk-ITBw(vIY_6ZbBOy18Ec7HQ7pK1;fW!1<&&04CnJoOIWMY@9|ldjwW-h~ zKdXkz4h{CWbY5_twqiv}MZjATo)*S{hc~99f^}@B4@9;|~6%WcEiUDTG z&9&=L5^nAZco1vqpTp%NB@vKE0VP2yhT%z(96=v=C@^Y<9SsaSHme7bAR5Gc4Q3LG zp{3bS9Z*GP5N{jHL@>~Ne?WkJOJO)mFrXLH&l3g6BUK}`y;wM<8z1CG}1FX`r ze!|b%iE#xK9PXZU7)m#aIZ2-LPu)4G_MBvQ&PaF82TxSVlav&!oh6A}d88W!rZbPW#b@4Q&^c09Pm5S$h(r!Wn_@)piRNW~-E_j&OMr)<|&`G7W?J#Ar*=`(A zAk1zH7~F?ZC~6J@Y?5D~8G1q+(MYh_W%jFK|-EX(|YHd)gU+Fn10+UKRJlS**665QHdZQj4th9B=oTBaRcSMAui!sC)+ zP*(n}h!t+*mE-+o*e^H6*Vsw2=E@Y8Fg01sflw+CNn@9;J|?%#evu@i68zVGmo z@S5)Mzp$>UP+3cFU>20$4Q35|%B+9Jtg#!;N`B%jZArtd@f*%ceafu+Fza(SoR$8R zSvAc1{0(Ofe#)%xaQY|HEP&J5J?iL>>DVN7;+sMOQyQmHesO^0q%?npMfRO&RDN{_OwoRn0Ojj1q3mx;TF zFAIxC)=iLCDE^R&V^pxs+BRIHG+~>=aTw;}e*vgFk3xxNkWev9m@oLJWV9%}CGWJq zozVK)I(f3AFlFS)X1I1;+0!pvtaPN$simlz7@VD2uP0LGXgN9?rQ9UhI(ANxfq7Lu zJ{Fk1N$zV)SyzHM>XcukdV*4CrxoBe=A5b{TRIj-Uod zF+R@u8c$~@H364#&QI~kfE-zx!&nNo@B=%^SW-McQ%fT~PFRz&?PppBqTr*!9FpZpPlDqz8^(fM(VL0kQ9F} z!XCz8|H(@j4#@h({9%8@-?gU0W|?vf`6$HeRG&w-D4(7Qqfa_ZhvCA-4$D;Z4MWi< zaZ{Y_?1ZAeN_6iDMf0lo69B!dwS!T22PblJXBzh`5^f+Vl}y2Z&$=fx=!WdfO$nCn?ouJB1~9qFv~|Bm^w4(5DZ9+!Q7cH}v(jv$_O zmP5T-T;^OBr&Bq3ogWQNB#H|h5+fF%d~6t}44brqBb{Vh`*s*m{4NN9K%xVbL9OHb zOMqzth`MdGGNcKkGNhp(f?q*gYjFFj;dNIVR;H(8ULZYhMYt!_Tvx0Bsqj%)gB%bz zc4twMqajND$xPr5NwLq{3XZ=Y>zxgfTnK*L3#sqTi4PO>k3et79Y z(l?PMOhB6?+uA@EInN*%GK9YXNK(sb^6uZkYK&b_6|!w53Uzc>k+CWEfyXBwP@Az<$}ftvrt}qB`owYXe3o zp%AC+FA_5pcSQVHnb$*hc);g3xTPm{i~!Cye4`Dgx035*^S+L~L=X+8{1{>-gVH(y zMSW@FCAJla`w;KJ3i>I;HF_}U54JLP#2ca+7nHZ9l^Sei+xtVzM$r?ccffU*ZF+W! z%`_hb!DeTt?msv&b?Cl{sfmO4&AN+4;mk^=E6^+MzxPB*>a`QL^=Z3Ua!fd zD8JH0j^XvRvYP2WLLJD>G^^9O)firb$nDM#_jt=SEFDIwC*c?g;(nRhpsa>?oC?li z5X*+qW&_@uL%y^}Z&ML?%T-r$G9~k+0;GhUOqH;|g;%Y723CW(lKEI11%PEfQWRey zkKBsRk(zYHAJ7tmy`Bm9l1j<(Sw=SPL#5W;&fuF%fyv>y|GLTd%s>O2c9XbW8M%7ToYXIxpA>B~|KNdW4XK9DF7N|C! z?!XP41|fA9=uauNg9Z{GD>EvxnX0n7$J2=YiDB2km`^EB<4l3^oKZ{2@1!y*PZ^nM zlEV57r@VLa{v8ZE;Vpa3+duQ{)jfD!?%d-n1qyhTp2fpzv*N8LS%2k@tu&nJ98!0r zhr;-y%O$5l;t)m}0(oy}+cOy0)}kS0)wcCysLFh_q&IU;gh)O0ZK5?lnS$2%r)li3 zi@%~}%mUJIQe!(nIGs*3 z6T~sn=8zecF)=-{OL1kvrL4I$Mr4PiL=!=oC7IK@2dA*9Q0U>$ZJ9G4sMhUf#d(l+ n<0 and p.suffix=='.pickle' and len(p.stem.split('_'))==2 and p.stem.split('_')[1].isdigit() @@ -487,7 +487,7 @@ def contrast_performance_evaluate(resultPath): barcodes = set([bcd for _, bcd in evtList]) '''标准特征集图像样本经特征提取并保存,运行一次后无需再运行''' - # stdfeat_infer(stdBarcodePath, stdFeaturePath, barcodes) + stdfeat_infer(stdBarcodePath, stdFeaturePath, barcodes) '''========= 构建用于比对的标准特征字典 =============''' stdDict = {} @@ -639,6 +639,7 @@ def compute_precise_recall(pickpath): file, ext = os.path.splitext(pickfile) if ext != '.pickle': return + if file.find('ft16') < 0: return with open(pickpath, 'rb') as f: results = pickle.load(f) @@ -717,7 +718,8 @@ def generate_event_and_stdfeatures(): '''=========================== 2. 提取并存储事件特征 ========================''' - eventDatePath = [# r'\\192.168.1.28\share\测试_202406\0723\0723_1', + eventDatePath = [r'\\192.168.1.28\share\测试_202406\0910\images', + # r'\\192.168.1.28\share\测试_202406\0723\0723_1', # r'\\192.168.1.28\share\测试_202406\0723\0723_2', # r'\\192.168.1.28\share\测试_202406\0723\0723_3', # r'\\192.168.1.28\share\测试_202406\0722\0722_01', @@ -751,12 +753,12 @@ def generate_event_and_stdfeatures(): # break ## 保存轨迹中 boxes 子图 - # for event in eventList: - # basename = os.path.basename(event['filepath']) - # savepath = os.path.join(subimgPath, basename) - # if not os.path.exists(savepath): - # os.makedirs(savepath) - # save_event_subimg(event, savepath) + for event in eventList: + basename = os.path.basename(event['filepath']) + savepath = os.path.join(subimgPath, basename) + if not os.path.exists(savepath): + os.makedirs(savepath) + save_event_subimg(event, savepath) print("eventList have generated and features have saved!") @@ -789,23 +791,23 @@ def ft16_to_uint8(arr_ft16): return arr_uint8, arr_ft16_ - + def main(): - generate_event_and_stdfeatures() + # generate_event_and_stdfeatures() - # contrast_performance_evaluate(resultPath) - # for filename in os.listdir(resultPath): - # if filename.find('.pickle') < 0: continue - # # if filename.find('0909') < 0: continue - # pickpath = os.path.join(resultPath, filename) - # compute_precise_recall(pickpath) + contrast_performance_evaluate(resultPath) + for filename in os.listdir(resultPath): + if filename.find('.pickle') < 0: continue + if filename.find('0911') < 0: continue + pickpath = os.path.join(resultPath, filename) + compute_precise_recall(pickpath) def main_std(): - std_sample_path = r"\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_500_1979_已清洗" + std_sample_path = r"\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_500_2192_已清洗" std_barcode_path = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes_2192" std_feature_path = r"\\192.168.1.28\share\测试_202406\contrast\std_features_2192_ft32vsft16" @@ -824,7 +826,8 @@ def main_std(): # print("done") if __name__ == '__main__': - main() + # main() + # main_std() diff --git a/contrast/one2one_onsite.py b/contrast/one2one_onsite.py index 9c42707..af5f6f5 100644 --- a/contrast/one2one_onsite.py +++ b/contrast/one2one_onsite.py @@ -39,30 +39,23 @@ def read_one2one_data(filepath): if len(simi_dict): simiList.append(simi_dict) return simiList - -def main(): - filepath = r"\\192.168.1.28\share\测试_202406\0910\images\OneToOneCompare.txt" + +def plot_pr_curve(matrix): - simiList = read_one2one_data(filepath) simimax, simimean = [], [] - small = [] - for simidict in simiList: + need_analysis = [] + for simidict in matrix: simimax.append(simidict["simi_max"]) simimean.append(simidict["simi_min"]) - if simidict["simi_max"]<0.6: - small.append(simidict) - - + if simidict["simi_max"]>0.6: + need_analysis.append(simidict) + simimax = np.array(simimax) simimean = np.array(simimean) - - - + TPFN_max = len(simimax) TPFN_mean = len(simimean) - - - + fig, axs = plt.subplots(2, 1) axs[0].hist(simimax, bins=60, edgecolor='black') axs[0].set_xlim([-0.2, 1]) @@ -71,14 +64,12 @@ def main(): axs[1].set_xlim([-0.2, 1]) axs[1].set_title(f'Cross Barcode, Num: {TPFN_mean}') # plt.savefig(f'./result/{file}_hist.png') # svg, png, pdf - - - + Recall_Pos = [] Thresh = np.linspace(-0.2, 1, 100) for th in Thresh: - TP = np.sum(simimax > th) - Recall_Pos.append(TP/TPFN_max) + TN = np.sum(simimax < th) + Recall_Pos.append(TN/TPFN_max) fig, ax = plt.subplots() ax.plot(Thresh, Recall_Pos, 'b', label='Recall_Pos: TP/TPFN') @@ -91,19 +82,48 @@ def main(): plt.show() # plt.savefig(f'./result/{file}_pr.png') # svg, png, pdf - print("Have done!") - - - - - - - + print("Have done!") + pass + + +def main(): + filepaths = [r"\\192.168.1.28\share\测试_202406\0913_扫A放B\0913_1\OneToOneCompare.txt", + r"\\192.168.1.28\share\测试_202406\0913_扫A放B\0913_2\OneToOneCompare.txt", + r"\\192.168.1.28\share\测试_202406\0914_扫A放B\0914_1\OneToOneCompare.txt", + r"\\192.168.1.28\share\测试_202406\0914_扫A放B\0914_2\OneToOneCompare.txt" + ] + simiList = [] + for fp in filepaths: + slist = read_one2one_data(fp) + + simiList.extend(slist) - - + plot_pr_curve(simiList) + + if __name__ == "__main__": - main() \ No newline at end of file + main() + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/contrast/result/pickle/20240911_183903.txt b/contrast/result/pickle/20240911_183903.txt new file mode 100644 index 0000000..566c0d1 --- /dev/null +++ b/contrast/result/pickle/20240911_183903.txt @@ -0,0 +1,202 @@ +same, 6901668936684, 20240910-173355-1bbf290e-1f14-4ba8-b666-82c990c4eea3_6901668936684, 0.268, 0.659, 0.506 +same, 6902088131437, 20240910-173847-9eedb2ac-e3a5-4d07-94fe-f7e881d67418_6902088131437, 0.582, 0.979, 0.806 +same, 6904682300226, 20240910-171800-76a062fd-409c-480f-94f4-fd0e65d72467_6904682300226, 0.173, 0.830, 0.372 +same, 6970399922365, 20240910-172352-9b79a4d9-092f-477d-a7a4-8af079d1538d_6970399922365, 0.226, 0.774, 0.597 +same, 6902265202318, 20240910-170331-e3ee7cf5-dda2-4d0b-b8c9-4fb411fe78ec_6902265202318, 0.557, 0.922, 0.803 +same, 6907992517780, 20240910-163802-6b9f0129-8497-467f-a506-5708eda436a4_6907992517780, 0.354, 0.761, 0.848 +same, 6902132084337, 20240910-172403-dbc9de02-2811-449c-961f-23e7a16877d7_6902132084337, 0.406, 0.774, 0.850 +same, 6901668934888, 20240910-164315-38c640ba-cdf3-4ac1-8bff-55fe5d0560bb_6901668934888, 0.290, 0.598, 0.621 +same, 8000500023976, 20240910-173323-78dc658e-e4ef-49e1-a2ff-9ada34c27a85_8000500023976, 0.495, 0.825, 0.792 +same, 6904682300219, 20240910-164323-8e9a882a-a502-4a6e-bd99-70deb2130f57_6904682300219, 0.278, 0.782, 0.551 +same, 6903148231623, 20240910-163750-8e13e800-21d0-4bd9-b686-18ed213460cd_6903148231623, 0.320, 0.870, 0.718 +same, 6904682300219, 20240910-170920-dc16c149-06a3-4c2d-9bec-e930274b55ce_6904682300219, 0.217, 0.697, 0.418 +same, 6902890218470, 20240910-172802-0dbe3709-bd0c-45e7-ad36-0cfc9781ef1b_6902890218470, 0.198, 0.690, 0.538 +same, 6901668934888, 20240910-165620-0b870f0d-88a5-4286-bcbf-b0ebb41ddcfc_6901668934888, 0.325, 0.710, 0.689 +same, 6902088131437, 20240910-163846-7793e886-9f09-4744-9e24-eb47d65c09f5_6902088131437, 0.450, 0.983, 0.784 +same, 6901070600142, 20240910-170742-f78b59da-e242-42c9-ac7a-bba23ff11aff_6901070600142, 0.295, 0.728, 0.668 +same, 8993175540667, 20240910-172814-d17bd016-b8e5-4a21-a137-6bce693e0cb0_8993175540667, 0.418, 0.859, 0.687 +same, 6901668929730, 20240910-162930-ec2bb380-53fe-483f-9aab-9038643ebd1f_6901668929730, 0.549, 0.853, 0.888 +same, 6970399922365, 20240910-173332-55f8124d-7ab0-4a7a-8b08-f4dd9ba06502_6970399922365, 0.330, 0.766, 0.817 +same, 6901668929730, 20240910-173214-5b86868f-cb5b-4b7f-8f3a-aff08d89900d_6901668929730, 0.529, 0.849, 0.864 +same, 6903148048801, 20240910-172904-5462ad91-2a07-4116-898f-ff1d2021e6af_6903148048801, 0.444, 0.865, 0.769 +same, 6901668934628, 20240910-171838-c77a6d0d-185b-48e7-9af9-05de561f1172_6901668934628, 0.489, 0.930, 0.758 +same, 6902890218470, 20240910-170934-74c137ee-0689-42d0-9994-da8ba59fd5db_6902890218470, 0.251, 0.738, 0.652 +same, 6949909050041, 20240910-162952-f6ec3a40-9d64-4f20-b122-0b81eb4a2134_6949909050041, 0.384, 0.870, 0.714 +same, 6901668934888, 20240910-172841-9d7b16fb-4200-4089-b4b2-925da10208ed_6901668934888, 0.336, 0.778, 0.751 +same, 6901668936271, 20240910-165632-a1e22655-d9ad-47f5-a467-55718bd1e23e_6901668936271, 0.121, 0.604, 0.257 +same, 6904682300226, 20240910-163718-e1e09ad9-7a7e-4b43-beb7-47080c0a312e_6904682300226, 0.297, 0.847, 0.651 +same, 6903148126677, 20240910-173233-81246d1d-bbf3-4ee2-b6c1-7f8fe5818266_6903148126677, 0.422, 0.814, 0.717 +same, 6924743915848, 20240910-162836-186bdf15-5ebb-4b55-a3a4-47edea86a7ee_6924743915848, 0.285, 0.697, 0.640 +same, 6902132084337, 20240910-173222-8abca736-4b5d-4b8e-8e53-206809f37082_6902132084337, 0.350, 0.819, 0.857 +same, 8993175537322, 20240910-170945-c5a587f8-925a-46c2-b2f4-b8fe0fa41c90_8993175537322, 0.349, 0.832, 0.611 +same, 6902265202318, 20240910-162848-b0d67358-6f68-482a-94cb-d7de7414e32f_6902265202318, 0.392, 0.860, 0.695 +same, 6907992517780, 20240910-173730-c51d9d00-65a2-4212-99f3-701092810919_6907992517780, 0.405, 0.815, 0.865 +same, 6902265160502, 20240910-170318-706146af-c203-459a-b642-da428ce6426a_6902265160502, 0.162, 0.703, 0.531 +same, 6903148347409, 20240910-162902-3de7f2a9-9068-4f61-a150-0bcc47194a43_6903148347409, 0.156, 0.693, 0.470 +same, 6902265202318, 20240910-172023-a9b8c8b4-8030-4aa5-85fe-54cba57e745f_6902265202318, 0.378, 0.865, 0.694 +same, 6903148126677, 20240910-171920-0a6490ce-547f-493d-b76a-4c849ae12a93_6903148126677, 0.496, 0.879, 0.796 +same, 6901668936295, 20240910-164334-09d4e20e-68c8-48ca-b931-50e58428ef2a_6901668936295, 0.170, 0.631, 0.325 +same, 6958104102516, 20240910-165604-0f805f9d-24f7-4729-923a-bff489a09323_6958104102516, 0.235, 0.731, 0.550 +same, 6901668936684, 20240910-164409-053f810b-7369-4a3e-b91b-b7ba99fa5b9c_6901668936684, 0.230, 0.638, 0.450 +same, 6902265150022, 20240910-170349-b357333c-e939-4ce5-8019-7762799a9097_6902265150022, 0.362, 0.927, 0.794 +same, 6902890232216, 20240910-172828-0a20bffd-ede3-4b0c-977b-8652f52518f9_6902890232216, 0.255, 0.761, 0.626 +same, 6902890232216, 20240910-170807-7bc77832-4cf1-4cd8-aa54-994ff164dcc7_6902890232216, 0.296, 0.695, 0.585 +same, 6901668929730, 20240910-171715-a8fc6d8a-87bd-4fbd-b378-85e34193266f_6901668929730, 0.503, 0.848, 0.823 +same, 6903148231623, 20240910-170258-38579506-3874-4d71-b9d2-ac6e47ca75dd_6903148231623, 0.256, 0.720, 0.506 +same, 6902265150022, 20240910-172010-035f68e4-9b7c-40f7-961c-aa8c0f154252_6902265150022, 0.428, 0.940, 0.823 +same, 6901668929518, 20240910-173344-258d27a2-b2e1-468e-8f32-40edcda94486_6901668929518, 0.361, 0.853, 0.721 +same, 6901668934628, 20240910-170431-722e7de7-c7ef-4825-8080-be019c7f4602_6901668934628, 0.444, 0.882, 0.690 +same, 6974158892364, 20240910-163028-418ab174-5722-4e8a-ae12-e8d3c33f70b5_6974158892364, 0.119, 0.684, 0.439 +same, 6902890218470, 20240910-164251-a2a38e17-5532-49a5-9372-5a3ed8dc6972_6902890218470, 0.281, 0.689, 0.666 +same, 6902265150022, 20240910-163814-9fc0324d-134a-46ee-bb79-6b2dfb6388f9_6902265150022, 0.308, 0.899, 0.682 +same, 6901668929518, 20240910-170417-1ac149e8-4ecb-447c-a8b7-8d5b96e77ffa_6901668929518, 0.260, 0.821, 0.586 +same, 6901668936271, 20240910-172745-96dc9808-4157-4806-856f-c7013452f302_6901668936271, 0.156, 0.617, 0.315 +same, 6903148126677, 20240910-163857-736e50b8-eae8-4a6d-af26-ce3a57a073b8_6903148126677, 0.420, 0.891, 0.749 +same, 6901668936684, 20240910-172445-4f28474f-5463-4b19-bc2d-671105764e27_6901668936684, 0.212, 0.675, 0.445 +same, 6901668936295, 20240910-172754-d034ab2f-1b18-4d6a-a936-9fa538066253_6901668936295, 0.130, 0.630, 0.254 +same, 8993175540667, 20240910-165644-2e79a878-caf1-44ca-851c-287848800d35_8993175540667, 0.565, 0.872, 0.821 +same, 6901668929518, 20240910-172039-ebd2a496-c407-4450-b122-0e8f33e07de2_6901668929518, 0.341, 0.826, 0.726 +same, 6902132084337, 20240910-162817-18813894-397a-4c94-8b90-2d7a46319793_6902132084337, 0.438, 0.794, 0.887 +same, 6904682300219, 20240910-172257-9169e95d-ff11-4d31-98af-13df3f071840_6904682300219, 0.365, 0.804, 0.643 +same, 6901668934628, 20240910-173306-a1409202-ea3d-47c4-aa39-9d17dae711cf_6901668934628, 0.489, 0.894, 0.770 +same, 6902088131437, 20240910-172427-781eb94d-efb6-403c-b88f-f4b9df82fee0_6902088131437, 0.536, 0.980, 0.829 +same, 9421903892324, 20240910-173757-b4ed1c60-a96b-48ad-a451-3caecd61c327_9421903892324, 0.421, 0.892, 0.755 +same, 6901668936684, 20240910-170907-0e74383f-0341-4b90-b333-910e5a184296_6901668936684, 0.289, 0.672, 0.569 +same, 8000500023976, 20240910-171014-ee1e7d74-0d89-4014-a125-7c9cdebb15fd_8000500023976, 0.286, 0.872, 0.660 +same, 6901668929518, 20240910-164347-47377bae-2ca6-4d75-a076-e7f6c03d0f2e_6901668929518, 0.446, 0.847, 0.833 +same, 6902265160502, 20240910-173409-55dd7611-7394-4783-9f4e-4639401078ea_6902265160502, 0.212, 0.857, 0.611 +same, 6901668936684, 20240910-165525-e17864c9-e965-4531-be14-be551dad88fb_6901668936684, 0.149, 0.614, 0.344 +same, 6901668934628, 20240910-162805-592cff06-4acb-420f-bc36-bb00f3e0efbb_6901668934628, 0.275, 0.870, 0.521 +same, 6949909050041, 20240910-172919-ab2efd9a-a776-420f-95f5-2f8188f719e4_6949909050041, 0.401, 0.849, 0.792 +same, 6907992517780, 20240910-171723-2f8a7ece-99cb-4d91-b484-67b486599f26_6907992517780, 0.391, 0.848, 0.838 +same, 6902890218470, 20240910-165443-48bad32d-9f2b-499b-907d-c602cf563ee3_6902890218470, 0.281, 0.737, 0.774 +same, 6904682300219, 20240910-165455-d0e36365-f7f2-4f2e-84a7-1ffc24ccc1c7_6904682300219, 0.424, 0.892, 0.792 +same, 6904682300226, 20240910-170231-21568a27-641b-448d-8b8c-9eff4dfe7294_6904682300226, 0.257, 0.725, 0.636 +same, 6903148048801, 20240910-163740-851d23c1-e90f-4947-abc3-f463991c5505_6903148048801, 0.422, 0.826, 0.784 +same, 6902132084337, 20240910-170730-76626a74-34fb-486d-b889-4276552edb0e_6902132084337, 0.379, 0.831, 0.792 +same, 9421903892324, 20240910-172316-ffa74ee4-46d5-4266-b362-ebfebed0c572_9421903892324, 0.304, 0.877, 0.548 +same, 6904682300219, 20240910-173807-afdeec3a-0d6e-4db8-9baf-826b7d6b4660_6904682300219, 0.254, 0.770, 0.477 +same, 6902890232216, 20240910-163838-9e6f0b38-2ffe-4727-9ec7-a02435b8f629_6902890232216, 0.264, 0.786, 0.593 +same, 6901668936295, 20240910-165424-5d55263c-e523-495e-b673-fc53eaa68b05_6901668936295, 0.139, 0.542, 0.239 +same, 6903148126677, 20240910-170403-c1b9db80-7ee0-4508-8858-1e3e1b924648_6903148126677, 0.351, 0.861, 0.602 +same, 6901668929518, 20240910-172500-509a2d1e-e665-4fe6-8ffe-b69117d7b09f_6901668929518, 0.365, 0.821, 0.731 +same, 6903148231623, 20240910-171824-2d3edfcd-c169-4c6e-9734-9325b72cf9fe_6903148231623, 0.176, 0.688, 0.359 +same, 6901668929518, 20240910-173839-e4b3b834-c695-4917-b2f4-7cfaaebb98dc_6901668929518, 0.437, 0.874, 0.772 +same, 6901668929730, 20240910-170447-3b37f76f-5e21-400b-a8a8-2376c0796ae6_6901668929730, 0.461, 0.852, 0.797 +same, 6903148080085, 20240910-173314-d6ac3740-20f2-4aa7-a392-80a96b7607c3_6903148080085, 0.370, 0.860, 0.827 +same, 6901070600142, 20240910-172734-8c23b385-99f7-4e01-819a-78c86611ff48_6901070600142, 0.201, 0.672, 0.442 +same, 6958104102516, 20240910-164452-0f365052-2e4a-4d00-9cf7-0407d731d07e_6958104102516, 0.234, 0.866, 0.583 +same, 6901070600142, 20240910-162749-ab186eb8-6777-489b-8ad0-c1c6e66b285d_6901070600142, 0.269, 0.727, 0.591 +same, 8993175537322, 20240910-164432-008357d7-7ee6-49b9-8d08-3f3a6081c4e1_8993175537322, 0.450, 0.790, 0.785 +same, 6975682480393, 20240910-163007-6dfc085b-42b9-432d-9c41-7bfd294526b6_6975682480393, 0.448, 0.835, 0.828 +same, 6903148080085, 20240910-163825-e4de18e2-fe7c-4ff6-8b51-7ef2a7db7ed3_6903148080085, 0.351, 0.838, 0.766 +same, 6903148231623, 20240910-172854-5fb70036-3089-4258-9346-de25d415f120_6903148231623, 0.423, 0.845, 0.782 +same, 6949909050041, 20240910-170817-c2f8c500-3aa5-4bd2-bf82-787d0cd22585_6949909050041, 0.494, 0.893, 0.885 +same, 6907992517780, 20240910-170246-e773b037-a712-4d78-accd-71c24b675365_6907992517780, 0.338, 0.737, 0.823 +same, 6902265160502, 20240910-163907-1ac881ec-cac4-4811-9cab-1826731e77bd_6902265160502, 0.239, 0.833, 0.706 +same, 6901668936271, 20240910-164239-e4d8f615-8cf3-483d-bc6e-03e470e2110c_6901668936271, 0.230, 0.615, 0.390 +same, 8993175537322, 20240910-172328-48a512b9-4fb1-4abf-bca9-8b3443ce8f2b_8993175537322, 0.456, 0.783, 0.719 +same, 8993175537322, 20240910-173819-226cc352-acdc-4419-9159-c97ae0eb58af_8993175537322, 0.455, 0.766, 0.717 +same, 6901668929518, 20240910-165517-a0000cdf-aa15-42c8-a6be-dbce8cf7cb32_6901668929518, 0.406, 0.861, 0.759 +same, 8000500023976, 20240910-172417-e9d563b9-74e2-4ec1-8f34-331424b48e72_8000500023976, 0.350, 0.853, 0.686 +diff, 8993175537322, 20240910-173355-1bbf290e-1f14-4ba8-b666-82c990c4eea3_6901668936684, 0.017, 0.341, 0.030 +diff, 6904682300226, 20240910-173847-9eedb2ac-e3a5-4d07-94fe-f7e881d67418_6902088131437, 0.007, 0.348, 0.013 +diff, 8993175540667, 20240910-171800-76a062fd-409c-480f-94f4-fd0e65d72467_6904682300226, 0.038, 0.309, 0.067 +diff, 6901668934628, 20240910-172352-9b79a4d9-092f-477d-a7a4-8af079d1538d_6970399922365, -0.003, 0.302, -0.006 +diff, 6901668929518, 20240910-170331-e3ee7cf5-dda2-4d0b-b8c9-4fb411fe78ec_6902265202318, -0.023, 0.273, -0.038 +diff, 6903148080085, 20240910-163802-6b9f0129-8497-467f-a506-5708eda436a4_6907992517780, 0.026, 0.408, 0.061 +diff, 6970399922365, 20240910-172403-dbc9de02-2811-449c-961f-23e7a16877d7_6902132084337, 0.090, 0.479, 0.207 +diff, 6904682300226, 20240910-164315-38c640ba-cdf3-4ac1-8bff-55fe5d0560bb_6901668934888, 0.072, 0.383, 0.142 +diff, 6974158892364, 20240910-173323-78dc658e-e4ef-49e1-a2ff-9ada34c27a85_8000500023976, -0.044, 0.340, -0.117 +diff, 6901668934888, 20240910-164323-8e9a882a-a502-4a6e-bd99-70deb2130f57_6904682300219, -0.017, 0.459, -0.042 +diff, 6907992517780, 20240910-163750-8e13e800-21d0-4bd9-b686-18ed213460cd_6903148231623, 0.019, 0.391, 0.051 +diff, 6901668934628, 20240910-170920-dc16c149-06a3-4c2d-9bec-e930274b55ce_6904682300219, 0.033, 0.331, 0.063 +diff, 6901668936684, 20240910-172802-0dbe3709-bd0c-45e7-ad36-0cfc9781ef1b_6902890218470, -0.072, 0.270, -0.163 +diff, 6907992517780, 20240910-165620-0b870f0d-88a5-4286-bcbf-b0ebb41ddcfc_6901668934888, 0.141, 0.460, 0.292 +diff, 6958104102516, 20240910-163846-7793e886-9f09-4744-9e24-eb47d65c09f5_6902088131437, -0.022, 0.373, -0.053 +diff, 8993175537322, 20240910-170742-f78b59da-e242-42c9-ac7a-bba23ff11aff_6901070600142, -0.018, 0.293, -0.033 +diff, 6903148126677, 20240910-172814-d17bd016-b8e5-4a21-a137-6bce693e0cb0_8993175540667, -0.044, 0.356, -0.082 +diff, 8993175540667, 20240910-162930-ec2bb380-53fe-483f-9aab-9038643ebd1f_6901668929730, -0.021, 0.349, -0.032 +diff, 9421903892324, 20240910-173332-55f8124d-7ab0-4a7a-8b08-f4dd9ba06502_6970399922365, 0.033, 0.383, 0.062 +diff, 6902890232216, 20240910-173214-5b86868f-cb5b-4b7f-8f3a-aff08d89900d_6901668929730, 0.076, 0.420, 0.151 +diff, 6903148231623, 20240910-172904-5462ad91-2a07-4116-898f-ff1d2021e6af_6903148048801, 0.012, 0.309, 0.019 +diff, 6924743915848, 20240910-171838-c77a6d0d-185b-48e7-9af9-05de561f1172_6901668934628, -0.069, 0.326, -0.147 +diff, 6975682480393, 20240910-170934-74c137ee-0689-42d0-9994-da8ba59fd5db_6902890218470, 0.122, 0.628, 0.274 +diff, 6975682480393, 20240910-162952-f6ec3a40-9d64-4f20-b122-0b81eb4a2134_6949909050041, 0.094, 0.647, 0.188 +diff, 6907992517780, 20240910-172841-9d7b16fb-4200-4089-b4b2-925da10208ed_6901668934888, 0.157, 0.646, 0.343 +diff, 6902265202318, 20240910-165632-a1e22655-d9ad-47f5-a467-55718bd1e23e_6901668936271, -0.006, 0.286, -0.011 +diff, 6902890232216, 20240910-163718-e1e09ad9-7a7e-4b43-beb7-47080c0a312e_6904682300226, 0.066, 0.491, 0.157 +diff, 9421903892324, 20240910-173233-81246d1d-bbf3-4ee2-b6c1-7f8fe5818266_6903148126677, -0.038, 0.450, -0.061 +diff, 6902132084337, 20240910-162836-186bdf15-5ebb-4b55-a3a4-47edea86a7ee_6924743915848, -0.061, 0.267, -0.125 +diff, 9421903892324, 20240910-173222-8abca736-4b5d-4b8e-8e53-206809f37082_6902132084337, 0.105, 0.454, 0.213 +diff, 6901668934628, 20240910-170945-c5a587f8-925a-46c2-b2f4-b8fe0fa41c90_8993175537322, -0.089, 0.186, -0.148 +diff, 6901668934888, 20240910-162848-b0d67358-6f68-482a-94cb-d7de7414e32f_6902265202318, -0.038, 0.352, -0.087 +diff, 6902265202318, 20240910-173730-c51d9d00-65a2-4212-99f3-701092810919_6907992517780, 0.025, 0.325, 0.043 +diff, 6902890232216, 20240910-170318-706146af-c203-459a-b642-da428ce6426a_6902265160502, 0.077, 0.540, 0.241 +diff, 6903148126677, 20240910-162902-3de7f2a9-9068-4f61-a150-0bcc47194a43_6903148347409, -0.047, 0.247, -0.113 +diff, 6903148347409, 20240910-172023-a9b8c8b4-8030-4aa5-85fe-54cba57e745f_6902265202318, 0.019, 0.312, 0.049 +diff, 6904682300219, 20240910-171920-0a6490ce-547f-493d-b76a-4c849ae12a93_6903148126677, 0.022, 0.340, 0.033 +diff, 6974158892364, 20240910-164334-09d4e20e-68c8-48ca-b931-50e58428ef2a_6901668936295, 0.035, 0.446, 0.108 +diff, 6901070600142, 20240910-165604-0f805f9d-24f7-4729-923a-bff489a09323_6958104102516, 0.016, 0.385, 0.042 +diff, 6901668934628, 20240910-164409-053f810b-7369-4a3e-b91b-b7ba99fa5b9c_6901668936684, -0.045, 0.563, -0.079 +diff, 6924743915848, 20240910-170349-b357333c-e939-4ce5-8019-7762799a9097_6902265150022, -0.096, 0.342, -0.249 +diff, 6903148126677, 20240910-172828-0a20bffd-ede3-4b0c-977b-8652f52518f9_6902890232216, 0.053, 0.326, 0.112 +diff, 6904682300226, 20240910-170807-7bc77832-4cf1-4cd8-aa54-994ff164dcc7_6902890232216, 0.063, 0.430, 0.115 +diff, 9421903892324, 20240910-171715-a8fc6d8a-87bd-4fbd-b378-85e34193266f_6901668929730, -0.066, 0.306, -0.107 +diff, 6901668936684, 20240910-170258-38579506-3874-4d71-b9d2-ac6e47ca75dd_6903148231623, 0.062, 0.403, 0.131 +diff, 6970399922365, 20240910-172010-035f68e4-9b7c-40f7-961c-aa8c0f154252_6902265150022, -0.044, 0.355, -0.101 +diff, 6903148048801, 20240910-173344-258d27a2-b2e1-468e-8f32-40edcda94486_6901668929518, 0.077, 0.498, 0.147 +diff, 6901668934888, 20240910-170431-722e7de7-c7ef-4825-8080-be019c7f4602_6901668934628, 0.001, 0.441, 0.001 +diff, 6970399922365, 20240910-163028-418ab174-5722-4e8a-ae12-e8d3c33f70b5_6974158892364, 0.072, 0.537, 0.208 +diff, 6975682480393, 20240910-164251-a2a38e17-5532-49a5-9372-5a3ed8dc6972_6902890218470, 0.112, 0.660, 0.231 +diff, 6901668929518, 20240910-163814-9fc0324d-134a-46ee-bb79-6b2dfb6388f9_6902265150022, -0.067, 0.359, -0.146 +diff, 6901070600142, 20240910-170417-1ac149e8-4ecb-447c-a8b7-8d5b96e77ffa_6901668929518, -0.033, 0.306, -0.085 +diff, 6903148126677, 20240910-172745-96dc9808-4157-4806-856f-c7013452f302_6901668936271, 0.008, 0.361, 0.018 +diff, 6903148347409, 20240910-163857-736e50b8-eae8-4a6d-af26-ce3a57a073b8_6903148126677, -0.008, 0.348, -0.017 +diff, 6901668936271, 20240910-172445-4f28474f-5463-4b19-bc2d-671105764e27_6901668936684, 0.064, 0.555, 0.128 +diff, 6901070600142, 20240910-172754-d034ab2f-1b18-4d6a-a936-9fa538066253_6901668936295, 0.189, 0.600, 0.448 +diff, 6902265150022, 20240910-165644-2e79a878-caf1-44ca-851c-287848800d35_8993175540667, 0.036, 0.300, 0.064 +diff, 6901668934888, 20240910-172039-ebd2a496-c407-4450-b122-0e8f33e07de2_6901668929518, 0.047, 0.373, 0.112 +diff, 6958104102516, 20240910-162817-18813894-397a-4c94-8b90-2d7a46319793_6902132084337, -0.068, 0.247, -0.130 +diff, 6902265160502, 20240910-172257-9169e95d-ff11-4d31-98af-13df3f071840_6904682300219, 0.046, 0.467, 0.106 +diff, 6970399922365, 20240910-173306-a1409202-ea3d-47c4-aa39-9d17dae711cf_6901668934628, 0.023, 0.376, 0.049 +diff, 6902265202318, 20240910-172427-781eb94d-efb6-403c-b88f-f4b9df82fee0_6902088131437, 0.017, 0.314, 0.030 +diff, 6907992517780, 20240910-173757-b4ed1c60-a96b-48ad-a451-3caecd61c327_9421903892324, 0.118, 0.551, 0.254 +diff, 6901668936271, 20240910-170907-0e74383f-0341-4b90-b333-910e5a184296_6901668936684, 0.137, 0.498, 0.255 +diff, 6901668934628, 20240910-171014-ee1e7d74-0d89-4014-a125-7c9cdebb15fd_8000500023976, 0.061, 0.324, 0.135 +diff, 6903148126677, 20240910-164347-47377bae-2ca6-4d75-a076-e7f6c03d0f2e_6901668929518, -0.026, 0.332, -0.047 +diff, 6903148048801, 20240910-173409-55dd7611-7394-4783-9f4e-4639401078ea_6902265160502, 0.030, 0.370, 0.070 +diff, 6902132084337, 20240910-165525-e17864c9-e965-4531-be14-be551dad88fb_6901668936684, 0.043, 0.375, 0.112 +diff, 6902890232216, 20240910-162805-592cff06-4acb-420f-bc36-bb00f3e0efbb_6901668934628, -0.067, 0.258, -0.164 +diff, 6903148048801, 20240910-172919-ab2efd9a-a776-420f-95f5-2f8188f719e4_6949909050041, 0.118, 0.397, 0.235 +diff, 6970399922365, 20240910-171723-2f8a7ece-99cb-4d91-b484-67b486599f26_6907992517780, -0.043, 0.339, -0.101 +diff, 6903148048801, 20240910-165443-48bad32d-9f2b-499b-907d-c602cf563ee3_6902890218470, -0.001, 0.482, -0.002 +diff, 6904682300226, 20240910-165455-d0e36365-f7f2-4f2e-84a7-1ffc24ccc1c7_6904682300219, 0.270, 0.813, 0.583 +diff, 6901668936271, 20240910-170231-21568a27-641b-448d-8b8c-9eff4dfe7294_6904682300226, 0.026, 0.369, 0.057 +diff, 6949909050041, 20240910-163740-851d23c1-e90f-4947-abc3-f463991c5505_6903148048801, 0.104, 0.443, 0.192 +diff, 6902890232216, 20240910-170730-76626a74-34fb-486d-b889-4276552edb0e_6902132084337, -0.018, 0.254, -0.040 +diff, 6924743915848, 20240910-172316-ffa74ee4-46d5-4266-b362-ebfebed0c572_9421903892324, 0.076, 0.444, 0.182 +diff, 6901070600142, 20240910-173807-afdeec3a-0d6e-4db8-9baf-826b7d6b4660_6904682300219, 0.010, 0.482, 0.024 +diff, 6924743915848, 20240910-163838-9e6f0b38-2ffe-4727-9ec7-a02435b8f629_6902890232216, -0.025, 0.380, -0.061 +diff, 6902265160502, 20240910-165424-5d55263c-e523-495e-b673-fc53eaa68b05_6901668936295, -0.042, 0.280, -0.088 +diff, 6902088131437, 20240910-170403-c1b9db80-7ee0-4508-8858-1e3e1b924648_6903148126677, -0.019, 0.228, -0.026 +diff, 6903148080085, 20240910-172500-509a2d1e-e665-4fe6-8ffe-b69117d7b09f_6901668929518, 0.064, 0.486, 0.135 +diff, 6901668934888, 20240910-171824-2d3edfcd-c169-4c6e-9734-9325b72cf9fe_6903148231623, 0.014, 0.325, 0.036 +diff, 6901668929730, 20240910-173839-e4b3b834-c695-4917-b2f4-7cfaaebb98dc_6901668929518, -0.066, 0.282, -0.106 +diff, 6901070600142, 20240910-170447-3b37f76f-5e21-400b-a8a8-2376c0796ae6_6901668929730, -0.068, 0.414, -0.148 +diff, 6974158892364, 20240910-173314-d6ac3740-20f2-4aa7-a392-80a96b7607c3_6903148080085, -0.033, 0.303, -0.107 +diff, 6901668936295, 20240910-172734-8c23b385-99f7-4e01-819a-78c86611ff48_6901070600142, 0.008, 0.417, 0.015 +diff, 6975682480393, 20240910-164452-0f365052-2e4a-4d00-9cf7-0407d731d07e_6958104102516, 0.031, 0.405, 0.075 +diff, 6903148080085, 20240910-162749-ab186eb8-6777-489b-8ad0-c1c6e66b285d_6901070600142, -0.015, 0.311, -0.030 +diff, 6901668929730, 20240910-164432-008357d7-7ee6-49b9-8d08-3f3a6081c4e1_8993175537322, 0.020, 0.303, 0.035 +diff, 6902890218470, 20240910-163007-6dfc085b-42b9-432d-9c41-7bfd294526b6_6975682480393, 0.184, 0.633, 0.393 +diff, 6902890232216, 20240910-163825-e4de18e2-fe7c-4ff6-8b51-7ef2a7db7ed3_6903148080085, 0.023, 0.348, 0.053 +diff, 6902890232216, 20240910-172854-5fb70036-3089-4258-9346-de25d415f120_6903148231623, -0.080, 0.324, -0.182 +diff, 6901668936271, 20240910-170817-c2f8c500-3aa5-4bd2-bf82-787d0cd22585_6949909050041, -0.011, 0.324, -0.019 +diff, 6902265160502, 20240910-170246-e773b037-a712-4d78-accd-71c24b675365_6907992517780, -0.094, 0.358, -0.244 +diff, 6902132084337, 20240910-163907-1ac881ec-cac4-4811-9cab-1826731e77bd_6902265160502, -0.007, 0.319, -0.020 +diff, 6970399922365, 20240910-164239-e4d8f615-8cf3-483d-bc6e-03e470e2110c_6901668936271, 0.048, 0.361, 0.105 +diff, 6904682300219, 20240910-172328-48a512b9-4fb1-4abf-bca9-8b3443ce8f2b_8993175537322, -0.014, 0.472, -0.021 +diff, 6901668936271, 20240910-173819-226cc352-acdc-4419-9159-c97ae0eb58af_8993175537322, 0.009, 0.332, 0.014 +diff, 6901668936271, 20240910-165517-a0000cdf-aa15-42c8-a6be-dbce8cf7cb32_6901668929518, 0.089, 0.483, 0.153 +diff, 6901668929730, 20240910-172417-e9d563b9-74e2-4ec1-8f34-331424b48e72_8000500023976, 0.110, 0.465, 0.216 diff --git a/contrast/result/pickle/20240911_183903_ft16.txt b/contrast/result/pickle/20240911_183903_ft16.txt new file mode 100644 index 0000000..fe2872b --- /dev/null +++ b/contrast/result/pickle/20240911_183903_ft16.txt @@ -0,0 +1,202 @@ +same, 6901668936684, 20240910-173355-1bbf290e-1f14-4ba8-b666-82c990c4eea3_6901668936684, 0.268, 0.659, 0.506 +same, 6902088131437, 20240910-173847-9eedb2ac-e3a5-4d07-94fe-f7e881d67418_6902088131437, 0.582, 0.979, 0.806 +same, 6904682300226, 20240910-171800-76a062fd-409c-480f-94f4-fd0e65d72467_6904682300226, 0.173, 0.830, 0.372 +same, 6970399922365, 20240910-172352-9b79a4d9-092f-477d-a7a4-8af079d1538d_6970399922365, 0.226, 0.774, 0.597 +same, 6902265202318, 20240910-170331-e3ee7cf5-dda2-4d0b-b8c9-4fb411fe78ec_6902265202318, 0.557, 0.922, 0.803 +same, 6907992517780, 20240910-163802-6b9f0129-8497-467f-a506-5708eda436a4_6907992517780, 0.354, 0.761, 0.848 +same, 6902132084337, 20240910-172403-dbc9de02-2811-449c-961f-23e7a16877d7_6902132084337, 0.406, 0.774, 0.850 +same, 6901668934888, 20240910-164315-38c640ba-cdf3-4ac1-8bff-55fe5d0560bb_6901668934888, 0.290, 0.598, 0.621 +same, 8000500023976, 20240910-173323-78dc658e-e4ef-49e1-a2ff-9ada34c27a85_8000500023976, 0.495, 0.825, 0.792 +same, 6904682300219, 20240910-164323-8e9a882a-a502-4a6e-bd99-70deb2130f57_6904682300219, 0.278, 0.782, 0.551 +same, 6903148231623, 20240910-163750-8e13e800-21d0-4bd9-b686-18ed213460cd_6903148231623, 0.320, 0.870, 0.718 +same, 6904682300219, 20240910-170920-dc16c149-06a3-4c2d-9bec-e930274b55ce_6904682300219, 0.217, 0.697, 0.418 +same, 6902890218470, 20240910-172802-0dbe3709-bd0c-45e7-ad36-0cfc9781ef1b_6902890218470, 0.198, 0.690, 0.538 +same, 6901668934888, 20240910-165620-0b870f0d-88a5-4286-bcbf-b0ebb41ddcfc_6901668934888, 0.325, 0.710, 0.690 +same, 6902088131437, 20240910-163846-7793e886-9f09-4744-9e24-eb47d65c09f5_6902088131437, 0.450, 0.983, 0.784 +same, 6901070600142, 20240910-170742-f78b59da-e242-42c9-ac7a-bba23ff11aff_6901070600142, 0.295, 0.728, 0.668 +same, 8993175540667, 20240910-172814-d17bd016-b8e5-4a21-a137-6bce693e0cb0_8993175540667, 0.418, 0.859, 0.687 +same, 6901668929730, 20240910-162930-ec2bb380-53fe-483f-9aab-9038643ebd1f_6901668929730, 0.549, 0.853, 0.888 +same, 6970399922365, 20240910-173332-55f8124d-7ab0-4a7a-8b08-f4dd9ba06502_6970399922365, 0.330, 0.766, 0.817 +same, 6901668929730, 20240910-173214-5b86868f-cb5b-4b7f-8f3a-aff08d89900d_6901668929730, 0.529, 0.849, 0.864 +same, 6903148048801, 20240910-172904-5462ad91-2a07-4116-898f-ff1d2021e6af_6903148048801, 0.444, 0.865, 0.769 +same, 6901668934628, 20240910-171838-c77a6d0d-185b-48e7-9af9-05de561f1172_6901668934628, 0.489, 0.930, 0.758 +same, 6902890218470, 20240910-170934-74c137ee-0689-42d0-9994-da8ba59fd5db_6902890218470, 0.251, 0.738, 0.652 +same, 6949909050041, 20240910-162952-f6ec3a40-9d64-4f20-b122-0b81eb4a2134_6949909050041, 0.384, 0.870, 0.714 +same, 6901668934888, 20240910-172841-9d7b16fb-4200-4089-b4b2-925da10208ed_6901668934888, 0.336, 0.778, 0.751 +same, 6901668936271, 20240910-165632-a1e22655-d9ad-47f5-a467-55718bd1e23e_6901668936271, 0.121, 0.604, 0.257 +same, 6904682300226, 20240910-163718-e1e09ad9-7a7e-4b43-beb7-47080c0a312e_6904682300226, 0.297, 0.847, 0.651 +same, 6903148126677, 20240910-173233-81246d1d-bbf3-4ee2-b6c1-7f8fe5818266_6903148126677, 0.422, 0.814, 0.717 +same, 6924743915848, 20240910-162836-186bdf15-5ebb-4b55-a3a4-47edea86a7ee_6924743915848, 0.285, 0.697, 0.640 +same, 6902132084337, 20240910-173222-8abca736-4b5d-4b8e-8e53-206809f37082_6902132084337, 0.350, 0.819, 0.857 +same, 8993175537322, 20240910-170945-c5a587f8-925a-46c2-b2f4-b8fe0fa41c90_8993175537322, 0.349, 0.832, 0.611 +same, 6902265202318, 20240910-162848-b0d67358-6f68-482a-94cb-d7de7414e32f_6902265202318, 0.392, 0.859, 0.695 +same, 6907992517780, 20240910-173730-c51d9d00-65a2-4212-99f3-701092810919_6907992517780, 0.405, 0.815, 0.865 +same, 6902265160502, 20240910-170318-706146af-c203-459a-b642-da428ce6426a_6902265160502, 0.162, 0.703, 0.531 +same, 6903148347409, 20240910-162902-3de7f2a9-9068-4f61-a150-0bcc47194a43_6903148347409, 0.156, 0.693, 0.470 +same, 6902265202318, 20240910-172023-a9b8c8b4-8030-4aa5-85fe-54cba57e745f_6902265202318, 0.378, 0.865, 0.694 +same, 6903148126677, 20240910-171920-0a6490ce-547f-493d-b76a-4c849ae12a93_6903148126677, 0.496, 0.879, 0.796 +same, 6901668936295, 20240910-164334-09d4e20e-68c8-48ca-b931-50e58428ef2a_6901668936295, 0.170, 0.631, 0.325 +same, 6958104102516, 20240910-165604-0f805f9d-24f7-4729-923a-bff489a09323_6958104102516, 0.235, 0.731, 0.550 +same, 6901668936684, 20240910-164409-053f810b-7369-4a3e-b91b-b7ba99fa5b9c_6901668936684, 0.230, 0.638, 0.450 +same, 6902265150022, 20240910-170349-b357333c-e939-4ce5-8019-7762799a9097_6902265150022, 0.362, 0.927, 0.794 +same, 6902890232216, 20240910-172828-0a20bffd-ede3-4b0c-977b-8652f52518f9_6902890232216, 0.255, 0.761, 0.626 +same, 6902890232216, 20240910-170807-7bc77832-4cf1-4cd8-aa54-994ff164dcc7_6902890232216, 0.296, 0.695, 0.585 +same, 6901668929730, 20240910-171715-a8fc6d8a-87bd-4fbd-b378-85e34193266f_6901668929730, 0.503, 0.848, 0.823 +same, 6903148231623, 20240910-170258-38579506-3874-4d71-b9d2-ac6e47ca75dd_6903148231623, 0.256, 0.720, 0.506 +same, 6902265150022, 20240910-172010-035f68e4-9b7c-40f7-961c-aa8c0f154252_6902265150022, 0.428, 0.940, 0.823 +same, 6901668929518, 20240910-173344-258d27a2-b2e1-468e-8f32-40edcda94486_6901668929518, 0.361, 0.853, 0.721 +same, 6901668934628, 20240910-170431-722e7de7-c7ef-4825-8080-be019c7f4602_6901668934628, 0.444, 0.882, 0.690 +same, 6974158892364, 20240910-163028-418ab174-5722-4e8a-ae12-e8d3c33f70b5_6974158892364, 0.119, 0.684, 0.439 +same, 6902890218470, 20240910-164251-a2a38e17-5532-49a5-9372-5a3ed8dc6972_6902890218470, 0.281, 0.689, 0.666 +same, 6902265150022, 20240910-163814-9fc0324d-134a-46ee-bb79-6b2dfb6388f9_6902265150022, 0.308, 0.899, 0.682 +same, 6901668929518, 20240910-170417-1ac149e8-4ecb-447c-a8b7-8d5b96e77ffa_6901668929518, 0.260, 0.821, 0.586 +same, 6901668936271, 20240910-172745-96dc9808-4157-4806-856f-c7013452f302_6901668936271, 0.156, 0.617, 0.315 +same, 6903148126677, 20240910-163857-736e50b8-eae8-4a6d-af26-ce3a57a073b8_6903148126677, 0.420, 0.891, 0.749 +same, 6901668936684, 20240910-172445-4f28474f-5463-4b19-bc2d-671105764e27_6901668936684, 0.212, 0.675, 0.445 +same, 6901668936295, 20240910-172754-d034ab2f-1b18-4d6a-a936-9fa538066253_6901668936295, 0.130, 0.630, 0.254 +same, 8993175540667, 20240910-165644-2e79a878-caf1-44ca-851c-287848800d35_8993175540667, 0.565, 0.872, 0.821 +same, 6901668929518, 20240910-172039-ebd2a496-c407-4450-b122-0e8f33e07de2_6901668929518, 0.341, 0.826, 0.725 +same, 6902132084337, 20240910-162817-18813894-397a-4c94-8b90-2d7a46319793_6902132084337, 0.438, 0.794, 0.887 +same, 6904682300219, 20240910-172257-9169e95d-ff11-4d31-98af-13df3f071840_6904682300219, 0.365, 0.804, 0.643 +same, 6901668934628, 20240910-173306-a1409202-ea3d-47c4-aa39-9d17dae711cf_6901668934628, 0.489, 0.894, 0.770 +same, 6902088131437, 20240910-172427-781eb94d-efb6-403c-b88f-f4b9df82fee0_6902088131437, 0.536, 0.980, 0.829 +same, 9421903892324, 20240910-173757-b4ed1c60-a96b-48ad-a451-3caecd61c327_9421903892324, 0.421, 0.892, 0.755 +same, 6901668936684, 20240910-170907-0e74383f-0341-4b90-b333-910e5a184296_6901668936684, 0.289, 0.672, 0.569 +same, 8000500023976, 20240910-171014-ee1e7d74-0d89-4014-a125-7c9cdebb15fd_8000500023976, 0.286, 0.872, 0.660 +same, 6901668929518, 20240910-164347-47377bae-2ca6-4d75-a076-e7f6c03d0f2e_6901668929518, 0.446, 0.847, 0.834 +same, 6902265160502, 20240910-173409-55dd7611-7394-4783-9f4e-4639401078ea_6902265160502, 0.212, 0.857, 0.611 +same, 6901668936684, 20240910-165525-e17864c9-e965-4531-be14-be551dad88fb_6901668936684, 0.149, 0.614, 0.344 +same, 6901668934628, 20240910-162805-592cff06-4acb-420f-bc36-bb00f3e0efbb_6901668934628, 0.275, 0.870, 0.521 +same, 6949909050041, 20240910-172919-ab2efd9a-a776-420f-95f5-2f8188f719e4_6949909050041, 0.401, 0.849, 0.792 +same, 6907992517780, 20240910-171723-2f8a7ece-99cb-4d91-b484-67b486599f26_6907992517780, 0.391, 0.848, 0.838 +same, 6902890218470, 20240910-165443-48bad32d-9f2b-499b-907d-c602cf563ee3_6902890218470, 0.281, 0.737, 0.774 +same, 6904682300219, 20240910-165455-d0e36365-f7f2-4f2e-84a7-1ffc24ccc1c7_6904682300219, 0.424, 0.892, 0.792 +same, 6904682300226, 20240910-170231-21568a27-641b-448d-8b8c-9eff4dfe7294_6904682300226, 0.257, 0.725, 0.636 +same, 6903148048801, 20240910-163740-851d23c1-e90f-4947-abc3-f463991c5505_6903148048801, 0.422, 0.826, 0.784 +same, 6902132084337, 20240910-170730-76626a74-34fb-486d-b889-4276552edb0e_6902132084337, 0.379, 0.831, 0.792 +same, 9421903892324, 20240910-172316-ffa74ee4-46d5-4266-b362-ebfebed0c572_9421903892324, 0.304, 0.877, 0.548 +same, 6904682300219, 20240910-173807-afdeec3a-0d6e-4db8-9baf-826b7d6b4660_6904682300219, 0.254, 0.769, 0.477 +same, 6902890232216, 20240910-163838-9e6f0b38-2ffe-4727-9ec7-a02435b8f629_6902890232216, 0.264, 0.786, 0.593 +same, 6901668936295, 20240910-165424-5d55263c-e523-495e-b673-fc53eaa68b05_6901668936295, 0.139, 0.542, 0.239 +same, 6903148126677, 20240910-170403-c1b9db80-7ee0-4508-8858-1e3e1b924648_6903148126677, 0.351, 0.861, 0.602 +same, 6901668929518, 20240910-172500-509a2d1e-e665-4fe6-8ffe-b69117d7b09f_6901668929518, 0.365, 0.821, 0.731 +same, 6903148231623, 20240910-171824-2d3edfcd-c169-4c6e-9734-9325b72cf9fe_6903148231623, 0.176, 0.688, 0.359 +same, 6901668929518, 20240910-173839-e4b3b834-c695-4917-b2f4-7cfaaebb98dc_6901668929518, 0.437, 0.874, 0.772 +same, 6901668929730, 20240910-170447-3b37f76f-5e21-400b-a8a8-2376c0796ae6_6901668929730, 0.461, 0.852, 0.797 +same, 6903148080085, 20240910-173314-d6ac3740-20f2-4aa7-a392-80a96b7607c3_6903148080085, 0.370, 0.860, 0.827 +same, 6901070600142, 20240910-172734-8c23b385-99f7-4e01-819a-78c86611ff48_6901070600142, 0.201, 0.672, 0.442 +same, 6958104102516, 20240910-164452-0f365052-2e4a-4d00-9cf7-0407d731d07e_6958104102516, 0.234, 0.866, 0.583 +same, 6901070600142, 20240910-162749-ab186eb8-6777-489b-8ad0-c1c6e66b285d_6901070600142, 0.269, 0.727, 0.591 +same, 8993175537322, 20240910-164432-008357d7-7ee6-49b9-8d08-3f3a6081c4e1_8993175537322, 0.450, 0.790, 0.785 +same, 6975682480393, 20240910-163007-6dfc085b-42b9-432d-9c41-7bfd294526b6_6975682480393, 0.448, 0.835, 0.828 +same, 6903148080085, 20240910-163825-e4de18e2-fe7c-4ff6-8b51-7ef2a7db7ed3_6903148080085, 0.351, 0.838, 0.766 +same, 6903148231623, 20240910-172854-5fb70036-3089-4258-9346-de25d415f120_6903148231623, 0.423, 0.845, 0.782 +same, 6949909050041, 20240910-170817-c2f8c500-3aa5-4bd2-bf82-787d0cd22585_6949909050041, 0.494, 0.893, 0.885 +same, 6907992517780, 20240910-170246-e773b037-a712-4d78-accd-71c24b675365_6907992517780, 0.338, 0.737, 0.823 +same, 6902265160502, 20240910-163907-1ac881ec-cac4-4811-9cab-1826731e77bd_6902265160502, 0.239, 0.833, 0.706 +same, 6901668936271, 20240910-164239-e4d8f615-8cf3-483d-bc6e-03e470e2110c_6901668936271, 0.230, 0.615, 0.390 +same, 8993175537322, 20240910-172328-48a512b9-4fb1-4abf-bca9-8b3443ce8f2b_8993175537322, 0.456, 0.783, 0.719 +same, 8993175537322, 20240910-173819-226cc352-acdc-4419-9159-c97ae0eb58af_8993175537322, 0.455, 0.766, 0.717 +same, 6901668929518, 20240910-165517-a0000cdf-aa15-42c8-a6be-dbce8cf7cb32_6901668929518, 0.406, 0.861, 0.759 +same, 8000500023976, 20240910-172417-e9d563b9-74e2-4ec1-8f34-331424b48e72_8000500023976, 0.350, 0.853, 0.686 +diff, 8993175537322, 20240910-173355-1bbf290e-1f14-4ba8-b666-82c990c4eea3_6901668936684, 0.017, 0.341, 0.030 +diff, 6904682300226, 20240910-173847-9eedb2ac-e3a5-4d07-94fe-f7e881d67418_6902088131437, 0.007, 0.348, 0.013 +diff, 8993175540667, 20240910-171800-76a062fd-409c-480f-94f4-fd0e65d72467_6904682300226, 0.038, 0.309, 0.067 +diff, 6901668934628, 20240910-172352-9b79a4d9-092f-477d-a7a4-8af079d1538d_6970399922365, -0.003, 0.302, -0.006 +diff, 6901668929518, 20240910-170331-e3ee7cf5-dda2-4d0b-b8c9-4fb411fe78ec_6902265202318, -0.023, 0.273, -0.038 +diff, 6903148080085, 20240910-163802-6b9f0129-8497-467f-a506-5708eda436a4_6907992517780, 0.026, 0.408, 0.061 +diff, 6970399922365, 20240910-172403-dbc9de02-2811-449c-961f-23e7a16877d7_6902132084337, 0.090, 0.479, 0.207 +diff, 6904682300226, 20240910-164315-38c640ba-cdf3-4ac1-8bff-55fe5d0560bb_6901668934888, 0.072, 0.383, 0.142 +diff, 6974158892364, 20240910-173323-78dc658e-e4ef-49e1-a2ff-9ada34c27a85_8000500023976, -0.044, 0.340, -0.117 +diff, 6901668934888, 20240910-164323-8e9a882a-a502-4a6e-bd99-70deb2130f57_6904682300219, -0.017, 0.459, -0.042 +diff, 6907992517780, 20240910-163750-8e13e800-21d0-4bd9-b686-18ed213460cd_6903148231623, 0.019, 0.391, 0.051 +diff, 6901668934628, 20240910-170920-dc16c149-06a3-4c2d-9bec-e930274b55ce_6904682300219, 0.033, 0.331, 0.063 +diff, 6901668936684, 20240910-172802-0dbe3709-bd0c-45e7-ad36-0cfc9781ef1b_6902890218470, -0.072, 0.270, -0.163 +diff, 6907992517780, 20240910-165620-0b870f0d-88a5-4286-bcbf-b0ebb41ddcfc_6901668934888, 0.141, 0.461, 0.292 +diff, 6958104102516, 20240910-163846-7793e886-9f09-4744-9e24-eb47d65c09f5_6902088131437, -0.022, 0.373, -0.053 +diff, 8993175537322, 20240910-170742-f78b59da-e242-42c9-ac7a-bba23ff11aff_6901070600142, -0.018, 0.293, -0.033 +diff, 6903148126677, 20240910-172814-d17bd016-b8e5-4a21-a137-6bce693e0cb0_8993175540667, -0.044, 0.356, -0.082 +diff, 8993175540667, 20240910-162930-ec2bb380-53fe-483f-9aab-9038643ebd1f_6901668929730, -0.021, 0.349, -0.032 +diff, 9421903892324, 20240910-173332-55f8124d-7ab0-4a7a-8b08-f4dd9ba06502_6970399922365, 0.033, 0.383, 0.062 +diff, 6902890232216, 20240910-173214-5b86868f-cb5b-4b7f-8f3a-aff08d89900d_6901668929730, 0.076, 0.419, 0.151 +diff, 6903148231623, 20240910-172904-5462ad91-2a07-4116-898f-ff1d2021e6af_6903148048801, 0.012, 0.309, 0.019 +diff, 6924743915848, 20240910-171838-c77a6d0d-185b-48e7-9af9-05de561f1172_6901668934628, -0.069, 0.326, -0.147 +diff, 6975682480393, 20240910-170934-74c137ee-0689-42d0-9994-da8ba59fd5db_6902890218470, 0.122, 0.628, 0.274 +diff, 6975682480393, 20240910-162952-f6ec3a40-9d64-4f20-b122-0b81eb4a2134_6949909050041, 0.094, 0.647, 0.188 +diff, 6907992517780, 20240910-172841-9d7b16fb-4200-4089-b4b2-925da10208ed_6901668934888, 0.157, 0.646, 0.343 +diff, 6902265202318, 20240910-165632-a1e22655-d9ad-47f5-a467-55718bd1e23e_6901668936271, -0.006, 0.286, -0.011 +diff, 6902890232216, 20240910-163718-e1e09ad9-7a7e-4b43-beb7-47080c0a312e_6904682300226, 0.066, 0.491, 0.157 +diff, 9421903892324, 20240910-173233-81246d1d-bbf3-4ee2-b6c1-7f8fe5818266_6903148126677, -0.038, 0.450, -0.061 +diff, 6902132084337, 20240910-162836-186bdf15-5ebb-4b55-a3a4-47edea86a7ee_6924743915848, -0.061, 0.267, -0.125 +diff, 9421903892324, 20240910-173222-8abca736-4b5d-4b8e-8e53-206809f37082_6902132084337, 0.105, 0.454, 0.213 +diff, 6901668934628, 20240910-170945-c5a587f8-925a-46c2-b2f4-b8fe0fa41c90_8993175537322, -0.089, 0.186, -0.148 +diff, 6901668934888, 20240910-162848-b0d67358-6f68-482a-94cb-d7de7414e32f_6902265202318, -0.038, 0.352, -0.087 +diff, 6902265202318, 20240910-173730-c51d9d00-65a2-4212-99f3-701092810919_6907992517780, 0.025, 0.325, 0.043 +diff, 6902890232216, 20240910-170318-706146af-c203-459a-b642-da428ce6426a_6902265160502, 0.077, 0.540, 0.241 +diff, 6903148126677, 20240910-162902-3de7f2a9-9068-4f61-a150-0bcc47194a43_6903148347409, -0.047, 0.247, -0.113 +diff, 6903148347409, 20240910-172023-a9b8c8b4-8030-4aa5-85fe-54cba57e745f_6902265202318, 0.019, 0.312, 0.049 +diff, 6904682300219, 20240910-171920-0a6490ce-547f-493d-b76a-4c849ae12a93_6903148126677, 0.022, 0.340, 0.033 +diff, 6974158892364, 20240910-164334-09d4e20e-68c8-48ca-b931-50e58428ef2a_6901668936295, 0.035, 0.446, 0.108 +diff, 6901070600142, 20240910-165604-0f805f9d-24f7-4729-923a-bff489a09323_6958104102516, 0.016, 0.385, 0.042 +diff, 6901668934628, 20240910-164409-053f810b-7369-4a3e-b91b-b7ba99fa5b9c_6901668936684, -0.045, 0.563, -0.079 +diff, 6924743915848, 20240910-170349-b357333c-e939-4ce5-8019-7762799a9097_6902265150022, -0.096, 0.342, -0.249 +diff, 6903148126677, 20240910-172828-0a20bffd-ede3-4b0c-977b-8652f52518f9_6902890232216, 0.053, 0.326, 0.112 +diff, 6904682300226, 20240910-170807-7bc77832-4cf1-4cd8-aa54-994ff164dcc7_6902890232216, 0.063, 0.430, 0.115 +diff, 9421903892324, 20240910-171715-a8fc6d8a-87bd-4fbd-b378-85e34193266f_6901668929730, -0.066, 0.306, -0.107 +diff, 6901668936684, 20240910-170258-38579506-3874-4d71-b9d2-ac6e47ca75dd_6903148231623, 0.062, 0.403, 0.131 +diff, 6970399922365, 20240910-172010-035f68e4-9b7c-40f7-961c-aa8c0f154252_6902265150022, -0.044, 0.355, -0.101 +diff, 6903148048801, 20240910-173344-258d27a2-b2e1-468e-8f32-40edcda94486_6901668929518, 0.077, 0.498, 0.147 +diff, 6901668934888, 20240910-170431-722e7de7-c7ef-4825-8080-be019c7f4602_6901668934628, 0.001, 0.441, 0.001 +diff, 6970399922365, 20240910-163028-418ab174-5722-4e8a-ae12-e8d3c33f70b5_6974158892364, 0.072, 0.537, 0.208 +diff, 6975682480393, 20240910-164251-a2a38e17-5532-49a5-9372-5a3ed8dc6972_6902890218470, 0.112, 0.660, 0.231 +diff, 6901668929518, 20240910-163814-9fc0324d-134a-46ee-bb79-6b2dfb6388f9_6902265150022, -0.067, 0.359, -0.146 +diff, 6901070600142, 20240910-170417-1ac149e8-4ecb-447c-a8b7-8d5b96e77ffa_6901668929518, -0.033, 0.306, -0.085 +diff, 6903148126677, 20240910-172745-96dc9808-4157-4806-856f-c7013452f302_6901668936271, 0.008, 0.361, 0.018 +diff, 6903148347409, 20240910-163857-736e50b8-eae8-4a6d-af26-ce3a57a073b8_6903148126677, -0.008, 0.348, -0.017 +diff, 6901668936271, 20240910-172445-4f28474f-5463-4b19-bc2d-671105764e27_6901668936684, 0.064, 0.555, 0.128 +diff, 6901070600142, 20240910-172754-d034ab2f-1b18-4d6a-a936-9fa538066253_6901668936295, 0.189, 0.600, 0.448 +diff, 6902265150022, 20240910-165644-2e79a878-caf1-44ca-851c-287848800d35_8993175540667, 0.036, 0.300, 0.064 +diff, 6901668934888, 20240910-172039-ebd2a496-c407-4450-b122-0e8f33e07de2_6901668929518, 0.047, 0.373, 0.112 +diff, 6958104102516, 20240910-162817-18813894-397a-4c94-8b90-2d7a46319793_6902132084337, -0.068, 0.247, -0.130 +diff, 6902265160502, 20240910-172257-9169e95d-ff11-4d31-98af-13df3f071840_6904682300219, 0.046, 0.467, 0.106 +diff, 6970399922365, 20240910-173306-a1409202-ea3d-47c4-aa39-9d17dae711cf_6901668934628, 0.023, 0.376, 0.049 +diff, 6902265202318, 20240910-172427-781eb94d-efb6-403c-b88f-f4b9df82fee0_6902088131437, 0.017, 0.314, 0.030 +diff, 6907992517780, 20240910-173757-b4ed1c60-a96b-48ad-a451-3caecd61c327_9421903892324, 0.118, 0.551, 0.254 +diff, 6901668936271, 20240910-170907-0e74383f-0341-4b90-b333-910e5a184296_6901668936684, 0.137, 0.498, 0.255 +diff, 6901668934628, 20240910-171014-ee1e7d74-0d89-4014-a125-7c9cdebb15fd_8000500023976, 0.061, 0.324, 0.135 +diff, 6903148126677, 20240910-164347-47377bae-2ca6-4d75-a076-e7f6c03d0f2e_6901668929518, -0.026, 0.332, -0.047 +diff, 6903148048801, 20240910-173409-55dd7611-7394-4783-9f4e-4639401078ea_6902265160502, 0.030, 0.370, 0.070 +diff, 6902132084337, 20240910-165525-e17864c9-e965-4531-be14-be551dad88fb_6901668936684, 0.043, 0.375, 0.112 +diff, 6902890232216, 20240910-162805-592cff06-4acb-420f-bc36-bb00f3e0efbb_6901668934628, -0.067, 0.258, -0.164 +diff, 6903148048801, 20240910-172919-ab2efd9a-a776-420f-95f5-2f8188f719e4_6949909050041, 0.118, 0.397, 0.235 +diff, 6970399922365, 20240910-171723-2f8a7ece-99cb-4d91-b484-67b486599f26_6907992517780, -0.043, 0.339, -0.101 +diff, 6903148048801, 20240910-165443-48bad32d-9f2b-499b-907d-c602cf563ee3_6902890218470, -0.001, 0.482, -0.002 +diff, 6904682300226, 20240910-165455-d0e36365-f7f2-4f2e-84a7-1ffc24ccc1c7_6904682300219, 0.270, 0.813, 0.583 +diff, 6901668936271, 20240910-170231-21568a27-641b-448d-8b8c-9eff4dfe7294_6904682300226, 0.026, 0.369, 0.057 +diff, 6949909050041, 20240910-163740-851d23c1-e90f-4947-abc3-f463991c5505_6903148048801, 0.104, 0.443, 0.192 +diff, 6902890232216, 20240910-170730-76626a74-34fb-486d-b889-4276552edb0e_6902132084337, -0.018, 0.254, -0.040 +diff, 6924743915848, 20240910-172316-ffa74ee4-46d5-4266-b362-ebfebed0c572_9421903892324, 0.076, 0.444, 0.182 +diff, 6901070600142, 20240910-173807-afdeec3a-0d6e-4db8-9baf-826b7d6b4660_6904682300219, 0.010, 0.482, 0.024 +diff, 6924743915848, 20240910-163838-9e6f0b38-2ffe-4727-9ec7-a02435b8f629_6902890232216, -0.025, 0.380, -0.061 +diff, 6902265160502, 20240910-165424-5d55263c-e523-495e-b673-fc53eaa68b05_6901668936295, -0.042, 0.280, -0.088 +diff, 6902088131437, 20240910-170403-c1b9db80-7ee0-4508-8858-1e3e1b924648_6903148126677, -0.019, 0.228, -0.026 +diff, 6903148080085, 20240910-172500-509a2d1e-e665-4fe6-8ffe-b69117d7b09f_6901668929518, 0.064, 0.486, 0.135 +diff, 6901668934888, 20240910-171824-2d3edfcd-c169-4c6e-9734-9325b72cf9fe_6903148231623, 0.014, 0.325, 0.036 +diff, 6901668929730, 20240910-173839-e4b3b834-c695-4917-b2f4-7cfaaebb98dc_6901668929518, -0.066, 0.282, -0.106 +diff, 6901070600142, 20240910-170447-3b37f76f-5e21-400b-a8a8-2376c0796ae6_6901668929730, -0.068, 0.414, -0.148 +diff, 6974158892364, 20240910-173314-d6ac3740-20f2-4aa7-a392-80a96b7607c3_6903148080085, -0.033, 0.303, -0.107 +diff, 6901668936295, 20240910-172734-8c23b385-99f7-4e01-819a-78c86611ff48_6901070600142, 0.008, 0.417, 0.015 +diff, 6975682480393, 20240910-164452-0f365052-2e4a-4d00-9cf7-0407d731d07e_6958104102516, 0.031, 0.405, 0.075 +diff, 6903148080085, 20240910-162749-ab186eb8-6777-489b-8ad0-c1c6e66b285d_6901070600142, -0.015, 0.311, -0.030 +diff, 6901668929730, 20240910-164432-008357d7-7ee6-49b9-8d08-3f3a6081c4e1_8993175537322, 0.020, 0.303, 0.035 +diff, 6902890218470, 20240910-163007-6dfc085b-42b9-432d-9c41-7bfd294526b6_6975682480393, 0.184, 0.633, 0.393 +diff, 6902890232216, 20240910-163825-e4de18e2-fe7c-4ff6-8b51-7ef2a7db7ed3_6903148080085, 0.023, 0.348, 0.053 +diff, 6902890232216, 20240910-172854-5fb70036-3089-4258-9346-de25d415f120_6903148231623, -0.080, 0.324, -0.182 +diff, 6901668936271, 20240910-170817-c2f8c500-3aa5-4bd2-bf82-787d0cd22585_6949909050041, -0.011, 0.324, -0.019 +diff, 6902265160502, 20240910-170246-e773b037-a712-4d78-accd-71c24b675365_6907992517780, -0.094, 0.358, -0.244 +diff, 6902132084337, 20240910-163907-1ac881ec-cac4-4811-9cab-1826731e77bd_6902265160502, -0.007, 0.319, -0.020 +diff, 6970399922365, 20240910-164239-e4d8f615-8cf3-483d-bc6e-03e470e2110c_6901668936271, 0.048, 0.361, 0.105 +diff, 6904682300219, 20240910-172328-48a512b9-4fb1-4abf-bca9-8b3443ce8f2b_8993175537322, -0.014, 0.472, -0.021 +diff, 6901668936271, 20240910-173819-226cc352-acdc-4419-9159-c97ae0eb58af_8993175537322, 0.009, 0.332, 0.014 +diff, 6901668936271, 20240910-165517-a0000cdf-aa15-42c8-a6be-dbce8cf7cb32_6901668929518, 0.089, 0.483, 0.153 +diff, 6901668929730, 20240910-172417-e9d563b9-74e2-4ec1-8f34-331424b48e72_8000500023976, 0.110, 0.465, 0.216 diff --git a/contrast/result/pickle/20240911_183903_uint8.txt b/contrast/result/pickle/20240911_183903_uint8.txt new file mode 100644 index 0000000..99ab7df --- /dev/null +++ b/contrast/result/pickle/20240911_183903_uint8.txt @@ -0,0 +1,202 @@ +same, 6901668936684, 20240910-173355-1bbf290e-1f14-4ba8-b666-82c990c4eea3_6901668936684, 0.268, 0.655, 0.507 +same, 6902088131437, 20240910-173847-9eedb2ac-e3a5-4d07-94fe-f7e881d67418_6902088131437, 0.581, 0.977, 0.805 +same, 6904682300226, 20240910-171800-76a062fd-409c-480f-94f4-fd0e65d72467_6904682300226, 0.173, 0.831, 0.372 +same, 6970399922365, 20240910-172352-9b79a4d9-092f-477d-a7a4-8af079d1538d_6970399922365, 0.226, 0.774, 0.596 +same, 6902265202318, 20240910-170331-e3ee7cf5-dda2-4d0b-b8c9-4fb411fe78ec_6902265202318, 0.554, 0.918, 0.802 +same, 6907992517780, 20240910-163802-6b9f0129-8497-467f-a506-5708eda436a4_6907992517780, 0.353, 0.753, 0.849 +same, 6902132084337, 20240910-172403-dbc9de02-2811-449c-961f-23e7a16877d7_6902132084337, 0.405, 0.765, 0.850 +same, 6901668934888, 20240910-164315-38c640ba-cdf3-4ac1-8bff-55fe5d0560bb_6901668934888, 0.289, 0.595, 0.620 +same, 8000500023976, 20240910-173323-78dc658e-e4ef-49e1-a2ff-9ada34c27a85_8000500023976, 0.492, 0.826, 0.792 +same, 6904682300219, 20240910-164323-8e9a882a-a502-4a6e-bd99-70deb2130f57_6904682300219, 0.279, 0.786, 0.554 +same, 6903148231623, 20240910-163750-8e13e800-21d0-4bd9-b686-18ed213460cd_6903148231623, 0.319, 0.870, 0.718 +same, 6904682300219, 20240910-170920-dc16c149-06a3-4c2d-9bec-e930274b55ce_6904682300219, 0.218, 0.692, 0.419 +same, 6902890218470, 20240910-172802-0dbe3709-bd0c-45e7-ad36-0cfc9781ef1b_6902890218470, 0.198, 0.688, 0.541 +same, 6901668934888, 20240910-165620-0b870f0d-88a5-4286-bcbf-b0ebb41ddcfc_6901668934888, 0.322, 0.713, 0.687 +same, 6902088131437, 20240910-163846-7793e886-9f09-4744-9e24-eb47d65c09f5_6902088131437, 0.448, 0.981, 0.782 +same, 6901070600142, 20240910-170742-f78b59da-e242-42c9-ac7a-bba23ff11aff_6901070600142, 0.294, 0.724, 0.666 +same, 8993175540667, 20240910-172814-d17bd016-b8e5-4a21-a137-6bce693e0cb0_8993175540667, 0.419, 0.856, 0.690 +same, 6901668929730, 20240910-162930-ec2bb380-53fe-483f-9aab-9038643ebd1f_6901668929730, 0.549, 0.847, 0.889 +same, 6970399922365, 20240910-173332-55f8124d-7ab0-4a7a-8b08-f4dd9ba06502_6970399922365, 0.328, 0.767, 0.815 +same, 6901668929730, 20240910-173214-5b86868f-cb5b-4b7f-8f3a-aff08d89900d_6901668929730, 0.529, 0.850, 0.865 +same, 6903148048801, 20240910-172904-5462ad91-2a07-4116-898f-ff1d2021e6af_6903148048801, 0.444, 0.861, 0.771 +same, 6901668934628, 20240910-171838-c77a6d0d-185b-48e7-9af9-05de561f1172_6901668934628, 0.486, 0.926, 0.755 +same, 6902890218470, 20240910-170934-74c137ee-0689-42d0-9994-da8ba59fd5db_6902890218470, 0.251, 0.737, 0.653 +same, 6949909050041, 20240910-162952-f6ec3a40-9d64-4f20-b122-0b81eb4a2134_6949909050041, 0.384, 0.866, 0.715 +same, 6901668934888, 20240910-172841-9d7b16fb-4200-4089-b4b2-925da10208ed_6901668934888, 0.335, 0.776, 0.751 +same, 6901668936271, 20240910-165632-a1e22655-d9ad-47f5-a467-55718bd1e23e_6901668936271, 0.118, 0.603, 0.253 +same, 6904682300226, 20240910-163718-e1e09ad9-7a7e-4b43-beb7-47080c0a312e_6904682300226, 0.297, 0.845, 0.653 +same, 6903148126677, 20240910-173233-81246d1d-bbf3-4ee2-b6c1-7f8fe5818266_6903148126677, 0.420, 0.817, 0.717 +same, 6924743915848, 20240910-162836-186bdf15-5ebb-4b55-a3a4-47edea86a7ee_6924743915848, 0.286, 0.706, 0.642 +same, 6902132084337, 20240910-173222-8abca736-4b5d-4b8e-8e53-206809f37082_6902132084337, 0.348, 0.818, 0.856 +same, 8993175537322, 20240910-170945-c5a587f8-925a-46c2-b2f4-b8fe0fa41c90_8993175537322, 0.348, 0.829, 0.611 +same, 6902265202318, 20240910-162848-b0d67358-6f68-482a-94cb-d7de7414e32f_6902265202318, 0.391, 0.858, 0.695 +same, 6907992517780, 20240910-173730-c51d9d00-65a2-4212-99f3-701092810919_6907992517780, 0.405, 0.816, 0.865 +same, 6902265160502, 20240910-170318-706146af-c203-459a-b642-da428ce6426a_6902265160502, 0.161, 0.697, 0.530 +same, 6903148347409, 20240910-162902-3de7f2a9-9068-4f61-a150-0bcc47194a43_6903148347409, 0.156, 0.691, 0.470 +same, 6902265202318, 20240910-172023-a9b8c8b4-8030-4aa5-85fe-54cba57e745f_6902265202318, 0.376, 0.863, 0.692 +same, 6903148126677, 20240910-171920-0a6490ce-547f-493d-b76a-4c849ae12a93_6903148126677, 0.494, 0.875, 0.795 +same, 6901668936295, 20240910-164334-09d4e20e-68c8-48ca-b931-50e58428ef2a_6901668936295, 0.170, 0.632, 0.325 +same, 6958104102516, 20240910-165604-0f805f9d-24f7-4729-923a-bff489a09323_6958104102516, 0.235, 0.726, 0.550 +same, 6901668936684, 20240910-164409-053f810b-7369-4a3e-b91b-b7ba99fa5b9c_6901668936684, 0.228, 0.638, 0.446 +same, 6902265150022, 20240910-170349-b357333c-e939-4ce5-8019-7762799a9097_6902265150022, 0.362, 0.927, 0.794 +same, 6902890232216, 20240910-172828-0a20bffd-ede3-4b0c-977b-8652f52518f9_6902890232216, 0.254, 0.761, 0.625 +same, 6902890232216, 20240910-170807-7bc77832-4cf1-4cd8-aa54-994ff164dcc7_6902890232216, 0.295, 0.692, 0.584 +same, 6901668929730, 20240910-171715-a8fc6d8a-87bd-4fbd-b378-85e34193266f_6901668929730, 0.501, 0.852, 0.823 +same, 6903148231623, 20240910-170258-38579506-3874-4d71-b9d2-ac6e47ca75dd_6903148231623, 0.255, 0.713, 0.505 +same, 6902265150022, 20240910-172010-035f68e4-9b7c-40f7-961c-aa8c0f154252_6902265150022, 0.427, 0.940, 0.823 +same, 6901668929518, 20240910-173344-258d27a2-b2e1-468e-8f32-40edcda94486_6901668929518, 0.361, 0.849, 0.721 +same, 6901668934628, 20240910-170431-722e7de7-c7ef-4825-8080-be019c7f4602_6901668934628, 0.442, 0.879, 0.689 +same, 6974158892364, 20240910-163028-418ab174-5722-4e8a-ae12-e8d3c33f70b5_6974158892364, 0.118, 0.681, 0.437 +same, 6902890218470, 20240910-164251-a2a38e17-5532-49a5-9372-5a3ed8dc6972_6902890218470, 0.281, 0.689, 0.668 +same, 6902265150022, 20240910-163814-9fc0324d-134a-46ee-bb79-6b2dfb6388f9_6902265150022, 0.306, 0.901, 0.680 +same, 6901668929518, 20240910-170417-1ac149e8-4ecb-447c-a8b7-8d5b96e77ffa_6901668929518, 0.260, 0.821, 0.586 +same, 6901668936271, 20240910-172745-96dc9808-4157-4806-856f-c7013452f302_6901668936271, 0.153, 0.609, 0.311 +same, 6903148126677, 20240910-163857-736e50b8-eae8-4a6d-af26-ce3a57a073b8_6903148126677, 0.418, 0.890, 0.749 +same, 6901668936684, 20240910-172445-4f28474f-5463-4b19-bc2d-671105764e27_6901668936684, 0.211, 0.672, 0.444 +same, 6901668936295, 20240910-172754-d034ab2f-1b18-4d6a-a936-9fa538066253_6901668936295, 0.128, 0.628, 0.251 +same, 8993175540667, 20240910-165644-2e79a878-caf1-44ca-851c-287848800d35_8993175540667, 0.565, 0.870, 0.822 +same, 6901668929518, 20240910-172039-ebd2a496-c407-4450-b122-0e8f33e07de2_6901668929518, 0.341, 0.823, 0.726 +same, 6902132084337, 20240910-162817-18813894-397a-4c94-8b90-2d7a46319793_6902132084337, 0.438, 0.795, 0.888 +same, 6904682300219, 20240910-172257-9169e95d-ff11-4d31-98af-13df3f071840_6904682300219, 0.364, 0.800, 0.643 +same, 6901668934628, 20240910-173306-a1409202-ea3d-47c4-aa39-9d17dae711cf_6901668934628, 0.487, 0.889, 0.769 +same, 6902088131437, 20240910-172427-781eb94d-efb6-403c-b88f-f4b9df82fee0_6902088131437, 0.533, 0.980, 0.827 +same, 9421903892324, 20240910-173757-b4ed1c60-a96b-48ad-a451-3caecd61c327_9421903892324, 0.420, 0.892, 0.755 +same, 6901668936684, 20240910-170907-0e74383f-0341-4b90-b333-910e5a184296_6901668936684, 0.289, 0.659, 0.568 +same, 8000500023976, 20240910-171014-ee1e7d74-0d89-4014-a125-7c9cdebb15fd_8000500023976, 0.286, 0.867, 0.660 +same, 6901668929518, 20240910-164347-47377bae-2ca6-4d75-a076-e7f6c03d0f2e_6901668929518, 0.445, 0.846, 0.833 +same, 6902265160502, 20240910-173409-55dd7611-7394-4783-9f4e-4639401078ea_6902265160502, 0.212, 0.857, 0.610 +same, 6901668936684, 20240910-165525-e17864c9-e965-4531-be14-be551dad88fb_6901668936684, 0.149, 0.612, 0.343 +same, 6901668934628, 20240910-162805-592cff06-4acb-420f-bc36-bb00f3e0efbb_6901668934628, 0.274, 0.868, 0.521 +same, 6949909050041, 20240910-172919-ab2efd9a-a776-420f-95f5-2f8188f719e4_6949909050041, 0.400, 0.845, 0.791 +same, 6907992517780, 20240910-171723-2f8a7ece-99cb-4d91-b484-67b486599f26_6907992517780, 0.391, 0.844, 0.837 +same, 6902890218470, 20240910-165443-48bad32d-9f2b-499b-907d-c602cf563ee3_6902890218470, 0.281, 0.738, 0.774 +same, 6904682300219, 20240910-165455-d0e36365-f7f2-4f2e-84a7-1ffc24ccc1c7_6904682300219, 0.423, 0.894, 0.794 +same, 6904682300226, 20240910-170231-21568a27-641b-448d-8b8c-9eff4dfe7294_6904682300226, 0.257, 0.724, 0.634 +same, 6903148048801, 20240910-163740-851d23c1-e90f-4947-abc3-f463991c5505_6903148048801, 0.421, 0.825, 0.785 +same, 6902132084337, 20240910-170730-76626a74-34fb-486d-b889-4276552edb0e_6902132084337, 0.379, 0.832, 0.794 +same, 9421903892324, 20240910-172316-ffa74ee4-46d5-4266-b362-ebfebed0c572_9421903892324, 0.301, 0.875, 0.544 +same, 6904682300219, 20240910-173807-afdeec3a-0d6e-4db8-9baf-826b7d6b4660_6904682300219, 0.254, 0.772, 0.481 +same, 6902890232216, 20240910-163838-9e6f0b38-2ffe-4727-9ec7-a02435b8f629_6902890232216, 0.264, 0.781, 0.592 +same, 6901668936295, 20240910-165424-5d55263c-e523-495e-b673-fc53eaa68b05_6901668936295, 0.138, 0.542, 0.237 +same, 6903148126677, 20240910-170403-c1b9db80-7ee0-4508-8858-1e3e1b924648_6903148126677, 0.351, 0.861, 0.603 +same, 6901668929518, 20240910-172500-509a2d1e-e665-4fe6-8ffe-b69117d7b09f_6901668929518, 0.364, 0.825, 0.731 +same, 6903148231623, 20240910-171824-2d3edfcd-c169-4c6e-9734-9325b72cf9fe_6903148231623, 0.174, 0.689, 0.357 +same, 6901668929518, 20240910-173839-e4b3b834-c695-4917-b2f4-7cfaaebb98dc_6901668929518, 0.436, 0.872, 0.772 +same, 6901668929730, 20240910-170447-3b37f76f-5e21-400b-a8a8-2376c0796ae6_6901668929730, 0.461, 0.851, 0.797 +same, 6903148080085, 20240910-173314-d6ac3740-20f2-4aa7-a392-80a96b7607c3_6903148080085, 0.369, 0.859, 0.826 +same, 6901070600142, 20240910-172734-8c23b385-99f7-4e01-819a-78c86611ff48_6901070600142, 0.200, 0.674, 0.441 +same, 6958104102516, 20240910-164452-0f365052-2e4a-4d00-9cf7-0407d731d07e_6958104102516, 0.233, 0.868, 0.582 +same, 6901070600142, 20240910-162749-ab186eb8-6777-489b-8ad0-c1c6e66b285d_6901070600142, 0.267, 0.725, 0.590 +same, 8993175537322, 20240910-164432-008357d7-7ee6-49b9-8d08-3f3a6081c4e1_8993175537322, 0.448, 0.787, 0.784 +same, 6975682480393, 20240910-163007-6dfc085b-42b9-432d-9c41-7bfd294526b6_6975682480393, 0.447, 0.832, 0.830 +same, 6903148080085, 20240910-163825-e4de18e2-fe7c-4ff6-8b51-7ef2a7db7ed3_6903148080085, 0.350, 0.836, 0.766 +same, 6903148231623, 20240910-172854-5fb70036-3089-4258-9346-de25d415f120_6903148231623, 0.422, 0.843, 0.780 +same, 6949909050041, 20240910-170817-c2f8c500-3aa5-4bd2-bf82-787d0cd22585_6949909050041, 0.493, 0.891, 0.884 +same, 6907992517780, 20240910-170246-e773b037-a712-4d78-accd-71c24b675365_6907992517780, 0.338, 0.738, 0.824 +same, 6902265160502, 20240910-163907-1ac881ec-cac4-4811-9cab-1826731e77bd_6902265160502, 0.238, 0.826, 0.706 +same, 6901668936271, 20240910-164239-e4d8f615-8cf3-483d-bc6e-03e470e2110c_6901668936271, 0.228, 0.610, 0.388 +same, 8993175537322, 20240910-172328-48a512b9-4fb1-4abf-bca9-8b3443ce8f2b_8993175537322, 0.454, 0.780, 0.718 +same, 8993175537322, 20240910-173819-226cc352-acdc-4419-9159-c97ae0eb58af_8993175537322, 0.454, 0.763, 0.718 +same, 6901668929518, 20240910-165517-a0000cdf-aa15-42c8-a6be-dbce8cf7cb32_6901668929518, 0.405, 0.855, 0.759 +same, 8000500023976, 20240910-172417-e9d563b9-74e2-4ec1-8f34-331424b48e72_8000500023976, 0.347, 0.851, 0.684 +diff, 8993175537322, 20240910-173355-1bbf290e-1f14-4ba8-b666-82c990c4eea3_6901668936684, 0.016, 0.342, 0.029 +diff, 6904682300226, 20240910-173847-9eedb2ac-e3a5-4d07-94fe-f7e881d67418_6902088131437, 0.006, 0.344, 0.011 +diff, 8993175540667, 20240910-171800-76a062fd-409c-480f-94f4-fd0e65d72467_6904682300226, 0.038, 0.307, 0.066 +diff, 6901668934628, 20240910-172352-9b79a4d9-092f-477d-a7a4-8af079d1538d_6970399922365, -0.003, 0.305, -0.006 +diff, 6901668929518, 20240910-170331-e3ee7cf5-dda2-4d0b-b8c9-4fb411fe78ec_6902265202318, -0.022, 0.268, -0.036 +diff, 6903148080085, 20240910-163802-6b9f0129-8497-467f-a506-5708eda436a4_6907992517780, 0.026, 0.413, 0.060 +diff, 6970399922365, 20240910-172403-dbc9de02-2811-449c-961f-23e7a16877d7_6902132084337, 0.090, 0.478, 0.206 +diff, 6904682300226, 20240910-164315-38c640ba-cdf3-4ac1-8bff-55fe5d0560bb_6901668934888, 0.071, 0.384, 0.141 +diff, 6974158892364, 20240910-173323-78dc658e-e4ef-49e1-a2ff-9ada34c27a85_8000500023976, -0.044, 0.335, -0.118 +diff, 6901668934888, 20240910-164323-8e9a882a-a502-4a6e-bd99-70deb2130f57_6904682300219, -0.016, 0.459, -0.041 +diff, 6907992517780, 20240910-163750-8e13e800-21d0-4bd9-b686-18ed213460cd_6903148231623, 0.018, 0.399, 0.049 +diff, 6901668934628, 20240910-170920-dc16c149-06a3-4c2d-9bec-e930274b55ce_6904682300219, 0.033, 0.332, 0.062 +diff, 6901668936684, 20240910-172802-0dbe3709-bd0c-45e7-ad36-0cfc9781ef1b_6902890218470, -0.072, 0.269, -0.162 +diff, 6907992517780, 20240910-165620-0b870f0d-88a5-4286-bcbf-b0ebb41ddcfc_6901668934888, 0.141, 0.457, 0.292 +diff, 6958104102516, 20240910-163846-7793e886-9f09-4744-9e24-eb47d65c09f5_6902088131437, -0.023, 0.370, -0.056 +diff, 8993175537322, 20240910-170742-f78b59da-e242-42c9-ac7a-bba23ff11aff_6901070600142, -0.017, 0.289, -0.030 +diff, 6903148126677, 20240910-172814-d17bd016-b8e5-4a21-a137-6bce693e0cb0_8993175540667, -0.044, 0.360, -0.083 +diff, 8993175540667, 20240910-162930-ec2bb380-53fe-483f-9aab-9038643ebd1f_6901668929730, -0.021, 0.359, -0.031 +diff, 9421903892324, 20240910-173332-55f8124d-7ab0-4a7a-8b08-f4dd9ba06502_6970399922365, 0.033, 0.376, 0.063 +diff, 6902890232216, 20240910-173214-5b86868f-cb5b-4b7f-8f3a-aff08d89900d_6901668929730, 0.075, 0.424, 0.151 +diff, 6903148231623, 20240910-172904-5462ad91-2a07-4116-898f-ff1d2021e6af_6903148048801, 0.013, 0.311, 0.021 +diff, 6924743915848, 20240910-171838-c77a6d0d-185b-48e7-9af9-05de561f1172_6901668934628, -0.069, 0.327, -0.147 +diff, 6975682480393, 20240910-170934-74c137ee-0689-42d0-9994-da8ba59fd5db_6902890218470, 0.121, 0.624, 0.273 +diff, 6975682480393, 20240910-162952-f6ec3a40-9d64-4f20-b122-0b81eb4a2134_6949909050041, 0.092, 0.646, 0.185 +diff, 6907992517780, 20240910-172841-9d7b16fb-4200-4089-b4b2-925da10208ed_6901668934888, 0.158, 0.637, 0.344 +diff, 6902265202318, 20240910-165632-a1e22655-d9ad-47f5-a467-55718bd1e23e_6901668936271, -0.006, 0.285, -0.013 +diff, 6902890232216, 20240910-163718-e1e09ad9-7a7e-4b43-beb7-47080c0a312e_6904682300226, 0.066, 0.486, 0.157 +diff, 9421903892324, 20240910-173233-81246d1d-bbf3-4ee2-b6c1-7f8fe5818266_6903148126677, -0.038, 0.451, -0.061 +diff, 6902132084337, 20240910-162836-186bdf15-5ebb-4b55-a3a4-47edea86a7ee_6924743915848, -0.060, 0.275, -0.123 +diff, 9421903892324, 20240910-173222-8abca736-4b5d-4b8e-8e53-206809f37082_6902132084337, 0.105, 0.456, 0.213 +diff, 6901668934628, 20240910-170945-c5a587f8-925a-46c2-b2f4-b8fe0fa41c90_8993175537322, -0.088, 0.187, -0.148 +diff, 6901668934888, 20240910-162848-b0d67358-6f68-482a-94cb-d7de7414e32f_6902265202318, -0.038, 0.355, -0.088 +diff, 6902265202318, 20240910-173730-c51d9d00-65a2-4212-99f3-701092810919_6907992517780, 0.026, 0.318, 0.044 +diff, 6902890232216, 20240910-170318-706146af-c203-459a-b642-da428ce6426a_6902265160502, 0.077, 0.548, 0.244 +diff, 6903148126677, 20240910-162902-3de7f2a9-9068-4f61-a150-0bcc47194a43_6903148347409, -0.047, 0.245, -0.115 +diff, 6903148347409, 20240910-172023-a9b8c8b4-8030-4aa5-85fe-54cba57e745f_6902265202318, 0.019, 0.319, 0.050 +diff, 6904682300219, 20240910-171920-0a6490ce-547f-493d-b76a-4c849ae12a93_6903148126677, 0.022, 0.342, 0.033 +diff, 6974158892364, 20240910-164334-09d4e20e-68c8-48ca-b931-50e58428ef2a_6901668936295, 0.035, 0.449, 0.109 +diff, 6901070600142, 20240910-165604-0f805f9d-24f7-4729-923a-bff489a09323_6958104102516, 0.016, 0.382, 0.041 +diff, 6901668934628, 20240910-164409-053f810b-7369-4a3e-b91b-b7ba99fa5b9c_6901668936684, -0.046, 0.570, -0.081 +diff, 6924743915848, 20240910-170349-b357333c-e939-4ce5-8019-7762799a9097_6902265150022, -0.097, 0.344, -0.250 +diff, 6903148126677, 20240910-172828-0a20bffd-ede3-4b0c-977b-8652f52518f9_6902890232216, 0.051, 0.327, 0.109 +diff, 6904682300226, 20240910-170807-7bc77832-4cf1-4cd8-aa54-994ff164dcc7_6902890232216, 0.062, 0.423, 0.113 +diff, 9421903892324, 20240910-171715-a8fc6d8a-87bd-4fbd-b378-85e34193266f_6901668929730, -0.067, 0.299, -0.108 +diff, 6901668936684, 20240910-170258-38579506-3874-4d71-b9d2-ac6e47ca75dd_6903148231623, 0.062, 0.401, 0.131 +diff, 6970399922365, 20240910-172010-035f68e4-9b7c-40f7-961c-aa8c0f154252_6902265150022, -0.043, 0.358, -0.099 +diff, 6903148048801, 20240910-173344-258d27a2-b2e1-468e-8f32-40edcda94486_6901668929518, 0.079, 0.502, 0.151 +diff, 6901668934888, 20240910-170431-722e7de7-c7ef-4825-8080-be019c7f4602_6901668934628, 0.001, 0.440, 0.001 +diff, 6970399922365, 20240910-163028-418ab174-5722-4e8a-ae12-e8d3c33f70b5_6974158892364, 0.071, 0.539, 0.207 +diff, 6975682480393, 20240910-164251-a2a38e17-5532-49a5-9372-5a3ed8dc6972_6902890218470, 0.112, 0.662, 0.232 +diff, 6901668929518, 20240910-163814-9fc0324d-134a-46ee-bb79-6b2dfb6388f9_6902265150022, -0.067, 0.361, -0.147 +diff, 6901070600142, 20240910-170417-1ac149e8-4ecb-447c-a8b7-8d5b96e77ffa_6901668929518, -0.033, 0.302, -0.086 +diff, 6903148126677, 20240910-172745-96dc9808-4157-4806-856f-c7013452f302_6901668936271, 0.007, 0.366, 0.016 +diff, 6903148347409, 20240910-163857-736e50b8-eae8-4a6d-af26-ce3a57a073b8_6903148126677, -0.007, 0.349, -0.017 +diff, 6901668936271, 20240910-172445-4f28474f-5463-4b19-bc2d-671105764e27_6901668936684, 0.062, 0.556, 0.123 +diff, 6901070600142, 20240910-172754-d034ab2f-1b18-4d6a-a936-9fa538066253_6901668936295, 0.188, 0.602, 0.448 +diff, 6902265150022, 20240910-165644-2e79a878-caf1-44ca-851c-287848800d35_8993175540667, 0.037, 0.303, 0.064 +diff, 6901668934888, 20240910-172039-ebd2a496-c407-4450-b122-0e8f33e07de2_6901668929518, 0.048, 0.374, 0.114 +diff, 6958104102516, 20240910-162817-18813894-397a-4c94-8b90-2d7a46319793_6902132084337, -0.068, 0.248, -0.130 +diff, 6902265160502, 20240910-172257-9169e95d-ff11-4d31-98af-13df3f071840_6904682300219, 0.046, 0.473, 0.106 +diff, 6970399922365, 20240910-173306-a1409202-ea3d-47c4-aa39-9d17dae711cf_6901668934628, 0.022, 0.368, 0.047 +diff, 6902265202318, 20240910-172427-781eb94d-efb6-403c-b88f-f4b9df82fee0_6902088131437, 0.016, 0.316, 0.029 +diff, 6907992517780, 20240910-173757-b4ed1c60-a96b-48ad-a451-3caecd61c327_9421903892324, 0.118, 0.554, 0.257 +diff, 6901668936271, 20240910-170907-0e74383f-0341-4b90-b333-910e5a184296_6901668936684, 0.136, 0.493, 0.253 +diff, 6901668934628, 20240910-171014-ee1e7d74-0d89-4014-a125-7c9cdebb15fd_8000500023976, 0.061, 0.321, 0.135 +diff, 6903148126677, 20240910-164347-47377bae-2ca6-4d75-a076-e7f6c03d0f2e_6901668929518, -0.026, 0.325, -0.048 +diff, 6903148048801, 20240910-173409-55dd7611-7394-4783-9f4e-4639401078ea_6902265160502, 0.030, 0.373, 0.071 +diff, 6902132084337, 20240910-165525-e17864c9-e965-4531-be14-be551dad88fb_6901668936684, 0.045, 0.370, 0.116 +diff, 6902890232216, 20240910-162805-592cff06-4acb-420f-bc36-bb00f3e0efbb_6901668934628, -0.066, 0.262, -0.161 +diff, 6903148048801, 20240910-172919-ab2efd9a-a776-420f-95f5-2f8188f719e4_6949909050041, 0.118, 0.403, 0.235 +diff, 6970399922365, 20240910-171723-2f8a7ece-99cb-4d91-b484-67b486599f26_6907992517780, -0.043, 0.340, -0.102 +diff, 6903148048801, 20240910-165443-48bad32d-9f2b-499b-907d-c602cf563ee3_6902890218470, -0.002, 0.480, -0.004 +diff, 6904682300226, 20240910-165455-d0e36365-f7f2-4f2e-84a7-1ffc24ccc1c7_6904682300219, 0.270, 0.808, 0.584 +diff, 6901668936271, 20240910-170231-21568a27-641b-448d-8b8c-9eff4dfe7294_6904682300226, 0.025, 0.367, 0.055 +diff, 6949909050041, 20240910-163740-851d23c1-e90f-4947-abc3-f463991c5505_6903148048801, 0.102, 0.445, 0.189 +diff, 6902890232216, 20240910-170730-76626a74-34fb-486d-b889-4276552edb0e_6902132084337, -0.019, 0.245, -0.041 +diff, 6924743915848, 20240910-172316-ffa74ee4-46d5-4266-b362-ebfebed0c572_9421903892324, 0.078, 0.441, 0.186 +diff, 6901070600142, 20240910-173807-afdeec3a-0d6e-4db8-9baf-826b7d6b4660_6904682300219, 0.009, 0.483, 0.021 +diff, 6924743915848, 20240910-163838-9e6f0b38-2ffe-4727-9ec7-a02435b8f629_6902890232216, -0.025, 0.388, -0.059 +diff, 6902265160502, 20240910-165424-5d55263c-e523-495e-b673-fc53eaa68b05_6901668936295, -0.041, 0.280, -0.087 +diff, 6902088131437, 20240910-170403-c1b9db80-7ee0-4508-8858-1e3e1b924648_6903148126677, -0.019, 0.230, -0.025 +diff, 6903148080085, 20240910-172500-509a2d1e-e665-4fe6-8ffe-b69117d7b09f_6901668929518, 0.064, 0.492, 0.136 +diff, 6901668934888, 20240910-171824-2d3edfcd-c169-4c6e-9734-9325b72cf9fe_6903148231623, 0.014, 0.328, 0.034 +diff, 6901668929730, 20240910-173839-e4b3b834-c695-4917-b2f4-7cfaaebb98dc_6901668929518, -0.066, 0.278, -0.107 +diff, 6901070600142, 20240910-170447-3b37f76f-5e21-400b-a8a8-2376c0796ae6_6901668929730, -0.069, 0.411, -0.149 +diff, 6974158892364, 20240910-173314-d6ac3740-20f2-4aa7-a392-80a96b7607c3_6903148080085, -0.034, 0.302, -0.111 +diff, 6901668936295, 20240910-172734-8c23b385-99f7-4e01-819a-78c86611ff48_6901070600142, 0.007, 0.424, 0.013 +diff, 6975682480393, 20240910-164452-0f365052-2e4a-4d00-9cf7-0407d731d07e_6958104102516, 0.030, 0.402, 0.074 +diff, 6903148080085, 20240910-162749-ab186eb8-6777-489b-8ad0-c1c6e66b285d_6901070600142, -0.014, 0.308, -0.027 +diff, 6901668929730, 20240910-164432-008357d7-7ee6-49b9-8d08-3f3a6081c4e1_8993175537322, 0.020, 0.298, 0.036 +diff, 6902890218470, 20240910-163007-6dfc085b-42b9-432d-9c41-7bfd294526b6_6975682480393, 0.185, 0.635, 0.394 +diff, 6902890232216, 20240910-163825-e4de18e2-fe7c-4ff6-8b51-7ef2a7db7ed3_6903148080085, 0.024, 0.351, 0.056 +diff, 6902890232216, 20240910-172854-5fb70036-3089-4258-9346-de25d415f120_6903148231623, -0.079, 0.318, -0.181 +diff, 6901668936271, 20240910-170817-c2f8c500-3aa5-4bd2-bf82-787d0cd22585_6949909050041, -0.011, 0.325, -0.019 +diff, 6902265160502, 20240910-170246-e773b037-a712-4d78-accd-71c24b675365_6907992517780, -0.094, 0.362, -0.245 +diff, 6902132084337, 20240910-163907-1ac881ec-cac4-4811-9cab-1826731e77bd_6902265160502, -0.008, 0.321, -0.022 +diff, 6970399922365, 20240910-164239-e4d8f615-8cf3-483d-bc6e-03e470e2110c_6901668936271, 0.047, 0.366, 0.105 +diff, 6904682300219, 20240910-172328-48a512b9-4fb1-4abf-bca9-8b3443ce8f2b_8993175537322, -0.012, 0.472, -0.019 +diff, 6901668936271, 20240910-173819-226cc352-acdc-4419-9159-c97ae0eb58af_8993175537322, 0.010, 0.340, 0.016 +diff, 6901668936271, 20240910-165517-a0000cdf-aa15-42c8-a6be-dbce8cf7cb32_6901668929518, 0.090, 0.480, 0.155 +diff, 6901668929730, 20240910-172417-e9d563b9-74e2-4ec1-8f34-331424b48e72_8000500023976, 0.108, 0.463, 0.214 diff --git a/contrast/utils/__init__.py b/contrast/utils/__init__.py new file mode 100644 index 0000000..0cd4367 --- /dev/null +++ b/contrast/utils/__init__.py @@ -0,0 +1,7 @@ +# -*- coding: utf-8 -*- +""" +Created on Thu Sep 26 08:53:58 2024 + +@author: ym +""" + diff --git a/contrast/utils/barcode_set_operate.py b/contrast/utils/barcode_set_operate.py new file mode 100644 index 0000000..293a6fc --- /dev/null +++ b/contrast/utils/barcode_set_operate.py @@ -0,0 +1,83 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Sep 13 16:49:05 2024 + + 比较 stdBcdpath 和 filepath 中的 barcodes 列表,求出二者的并集和为包含在 + stdBcdpath 中的 barcodes 清单 + +@author: ym +""" +import os +from openpyxl import load_workbook, Workbook + +def read_xlsx(): + stdBcdpath = r"\\192.168.1.28\share\已标注数据备份\对比数据\barcode\total_barcode_6588" + filepath = r"\\192.168.1.28\share\联华中环店\中环店商品信息.xlsx" + + existingPath = r'\\192.168.1.28\share\联华中环店\中环店商品信息_已有商品.xlsx' + lackingPath = r'\\192.168.1.28\share\联华中环店\中环店商品信息_未包含商品.xlsx' + + workbook = load_workbook(filename=filepath) + sheet = workbook['Sheet1'] + barcodeCol = [sheet.cell(row=r, column=1).value for r in range(1, sheet.max_row+1)] + + zhBarcodeList = [barcodeCol[i] for i in range(1, len(barcodeCol))] + + stdBarcodeList = [] + for filename in os.listdir(stdBcdpath): + filepath = os.path.join(stdBcdpath, filename) + if not os.path.isdir(filepath) or not filename.isdigit(): + continue + stdBarcodeList.append(int(filename)) + + + stdBarcodeSet = set(stdBarcodeList) + zhBarcodeSet = set(zhBarcodeList) + interBarcodes = list(zhBarcodeSet.intersection(stdBarcodeSet)) + + print(len(interBarcodes)) + + dest_wb1 = Workbook() + dest_sheet1 = dest_wb1.active + for row in sheet.iter_rows(min_row=1, max_col=sheet.max_column, values_only=True): + if str(row[0]).find("商品条码")>=0: + dest_sheet1.append(row) + + if row[0] in interBarcodes: + dest_sheet1.append(row) + + dest_wb1.save(filename=existingPath) + dest_wb1.close() + + + diffBarcodes = list(zhBarcodeSet.difference(stdBarcodeSet)) + + dest_wb2 = Workbook() + dest_sheet2 = dest_wb2.active + for row in sheet.iter_rows(min_row=1, max_col=sheet.max_column, values_only=True): + if str(row[0]).find("商品条码")>=0: + dest_sheet2.append(row) + + if row[0] in diffBarcodes: + dest_sheet2.append(row) + + dest_wb2.save(filename=lackingPath) + dest_wb2.close() + + + workbook.close() + + +if __name__ == '__main__': + # main() + + read_xlsx() + + + + + + + + + \ No newline at end of file diff --git a/contrast/write_feature_json.py b/contrast/utils/write_feature_json.py similarity index 98% rename from contrast/write_feature_json.py rename to contrast/utils/write_feature_json.py index ba8a350..b007caa 100644 --- a/contrast/write_feature_json.py +++ b/contrast/utils/write_feature_json.py @@ -1,7 +1,16 @@ +# -*- coding: utf-8 -*- +""" + +@author: LiChen +""" import json import os import pickle import numpy as np + +import sys +sys.path.append(r"D:\DetectTracking\contrast") + from config import config as conf # from img_data import library_imgs, temp_imgs, main_library_imgs, main_imgs_2 # from test_logic import initModel,getFeatureList @@ -11,7 +20,6 @@ from PIL import Image device = conf.device - def initModel(): model = resnet18().to(device) model.load_state_dict(torch.load(conf.test_model, map_location=conf.device)) diff --git a/contrast/说明文档.txt b/contrast/说明文档.txt new file mode 100644 index 0000000..e69de29 diff --git a/pipeline.py b/pipeline.py new file mode 100644 index 0000000..eb346e2 --- /dev/null +++ b/pipeline.py @@ -0,0 +1,95 @@ +# -*- coding: utf-8 -*- +""" +Created on Sun Sep 29 08:59:21 2024 + +@author: ym +""" +import os +import cv2 +from pathlib import Path +from track_reid import parse_opt, yolo_resnet_tracker + +from tracking.dotrack.dotracks_back import doBackTracks +from tracking.dotrack.dotracks_front import doFrontTracks + +IMGFORMATS = '.bmp', '.jpeg', '.jpg', 'png', 'tif', 'tiff', 'webp', 'pfm' +VIDFORMATS = '.avi', '.gif', '.m4v', '.mkv', '.mov', '.mp4', '.ts', '.wmv' + +std_feature_path = r"\\192.168.1.28\share\测试_202406\contrast\std_features_2192_ft32vsft16" + + +opt = parse_opt() +optdict = vars(opt) + +def get_video_pairs(vpath): + vdieopath = [] + for filename in os.listdir(vpath): + file, ext = os.path.splitext(filename) + if ext in VIDFORMATS: + vdieopath.append(os.path.join(vpath, filename)) + return vdieopath + + +def pipeline(): + eventpath = r"\\192.168.1.28\share\测试_202406\0918\images1\20240918-110913-c3a7e4d9-23d4-4a6f-a23f-a2eeee510536_6939947701616" + savepath = r"D:\contrast\detect" + + optdict["project"] = savepath + eventname = os.path.basename(eventpath) + + vpaths = get_video_pairs(eventpath) + event_tracks = [] + for vpath in vpaths: + + '''事件结果文件夹''' + save_dir_event = Path(savepath) / Path(eventname) + save_dir_img = save_dir_event / Path(str(Path(vpath).stem)) + if not save_dir_img.exists(): + save_dir_img.mkdir(parents=True, exist_ok=True) + + '''Yolo + Resnet + Tracker''' + optdict["source"] = vpath + optdict["save_dir"] = save_dir_img + optdict["nosave"] = False + + tracksdict = yolo_resnet_tracker(**optdict) + + bboxes = tracksdict['TrackBoxes'] + + bname = os.path.basename(vpath) + if bname.split('_')[0] == "0" or bname.find('back')>=0: + vts = doFrontTracks(bboxes, tracksdict) + vts.classify() + + event_tracks.append(("back", vts)) + + if bname.split('_')[0] == "1" or bname.find('front')>=0: + vts = doBackTracks(bboxes, tracksdict) + vts.classify() + event_tracks.append(("front", vts)) + + + for CamerType, vts in event_tracks: + if CamerType == 'back': + pass + if CamerType == 'front': + pass + + + for featname in os.listdir(std_feature_path): + pass + + + + + + + + + +def main(): + pipeline() + + +if __name__ == "__main__": + main() \ No newline at end of file diff --git a/track_reid.py b/track_reid.py index e282218..8822f53 100644 --- a/track_reid.py +++ b/track_reid.py @@ -127,6 +127,176 @@ def init_trackers(tracker_yaml = None, bs=1): return trackers +@smart_inference_mode() +def yolo_resnet_tracker( + weights=ROOT / 'yolov5s.pt', # model path or triton URL + source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam) + + project=ROOT / 'runs/detect', # save results to project/name + name='exp', # save results to project/name + save_dir = '', + + tracker_yaml = "./tracking/trackers/cfg/botsort.yaml", + imgsz=(640, 640), # inference size (height, width) + conf_thres=0.25, # confidence threshold + iou_thres=0.45, # NMS IOU threshold + max_det=1000, # maximum detections per image + device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu + + view_img=False, # show results + save_txt=False, # save results to *.txt + save_csv=False, # save results in CSV format + save_conf=False, # save confidences in --save-txt labels + save_crop=False, # save cropped prediction boxes + + nosave=False, # do not save images/videos + + + classes=None, # filter by class: --class 0, or --class 0 2 3 + agnostic_nms=False, # class-agnostic NMS + augment=False, # augmented inference + visualize=False, # visualize features + update=False, # update all models + exist_ok=False, # existing project/name ok, do not increment + line_thickness=3, # bounding box thickness (pixels) + hide_labels=False, # hide labels + hide_conf=False, # hide confidencesL + half=False, # use FP16 half-precision inference + dnn=False, # use OpenCV DNN for ONNX inference + vid_stride=1, # video frame-rate stride + data=ROOT / 'data/coco128.yaml', # dataset.yaml path +): + source = str(source) + save_img = not nosave and not source.endswith('.txt') # save inference images + + # Load model + device = select_device(device) + model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) + stride, names, pt = model.stride, model.names, model.pt + imgsz = check_img_size(imgsz, s=stride) # check image size + + # Dataloader + bs = 1 # batch_size + + dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) + vid_path, vid_writer = [None] * bs, [None] * bs + + # Run inference + model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup + tracker = init_trackers(tracker_yaml, bs)[0] + + dt = (Profile(), Profile(), Profile()) + track_boxes = np.empty((0, 9), dtype = np.float32) + TracksDict = {} + for path, im, im0s, vid_cap, s in dataset: + with dt[0]: + im = torch.from_numpy(im).to(model.device) + im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 + im /= 255 # 0 - 255 to 0.0 - 1.0 + if len(im.shape) == 3: + im = im[None] # expand for batch dim + + # Inference + with dt[1]: + visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False + pred = model(im, augment=augment, visualize=visualize) + + # NMS + with dt[2]: + pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) + + # Process predictions + for i, det in enumerate(pred): # per image + im0 = im0s.copy() + + save_path = str(save_dir / Path(path).name) # im.jpg + s += '%gx%g ' % im.shape[2:] # print string + + annotator = Annotator(im0.copy(), line_width=line_thickness, example=str(names)) + + if len(det): + # Rescale boxes from img_size to im0 size + det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() + + # det = det.cpu().numpy() + ## ================================================================ writed by WQG + '''tracks: [x1, y1, x2, y2, track_id, score, cls, frame_index, box_index] + 0 1 2 3 4 5 6 7 8 + 这里,frame_index 也可以用视频的 帧ID 代替, box_index 保持不变 + ''' + det_tracking = Boxes(det, im0.shape).cpu().numpy() + tracks = tracker.update(det_tracking, im0) + if len(tracks) == 0: + continue + tracks[:, 7] = dataset.frame + + '''================== 1. 存储 dets/subimgs/features Dict =============''' + imgs, features = inference_image(im0, tracks) + + # TrackerFeats = np.concatenate([TrackerFeats, features], axis=0) + + imgdict = {} + boxdict = {} + featdict = {} + for ii, bid in enumerate(tracks[:, 8]): + imgdict.update({int(bid): imgs[ii]}) # [f"img_{int(bid)}"] = imgs[i] + boxdict.update({int(bid): tracks[ii, :]}) # [f"box_{int(bid)}"] = tracks[i, :] + featdict.update({int(bid): features[ii, :]}) # [f"feat_{int(bid)}"] = features[i, :] + TracksDict[f"frame_{int(dataset.frame)}"] = {"imgs":imgdict, "boxes":boxdict, "feats":featdict} + + track_boxes = np.concatenate([track_boxes, tracks], axis=0) + + '''================== 2. 提取手势位置 ===================''' + for *xyxy, id, conf, cls, fid, bid in reversed(tracks): + name = ('' if id==-1 else f'id:{int(id)} ') + names[int(cls)] + label = None if hide_labels else (name if hide_conf else f'{name} {conf:.2f}') + + if id >=0 and cls==0: + color = colors(int(cls), True) + elif id >=0 and cls!=0: + color = colors(int(id), True) + else: + color = colors(19, True) # 19为调色板的最后一个元素 + + annotator.box_label(xyxy, label, color=color) + + # Save results (image and video with tracking) + im0 = annotator.result() + save_path_img, ext = os.path.splitext(save_path) + if save_img: + if dataset.mode == 'image': + imgpath = save_path_img + f"_{dataset}.png" + else: + imgpath = save_path_img + f"_{dataset.frame}.png" + + cv2.imwrite(Path(imgpath), im0) + + if vid_path[i] != save_path: # new video + vid_path[i] = save_path + if isinstance(vid_writer[i], cv2.VideoWriter): + vid_writer[i].release() # release previous video writer + if vid_cap: # video + fps = vid_cap.get(cv2.CAP_PROP_FPS) + w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) + h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + else: # stream + fps, w, h = 30, im0.shape[1], im0.shape[0] + save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos + vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) + vid_writer[i].write(im0) + + # Print time (inference-only) + LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms") + + ## track_boxes: Array, [x1, y1, x2, y2, track_id, score, cls, frame_index, box_id] + TracksDict.update({"TrackBoxes": track_boxes}) + + + return TracksDict + + + + @smart_inference_mode() def run( weights=ROOT / 'yolov5s.pt', # model path or triton URL @@ -438,7 +608,8 @@ def run( def parse_opt(): - modelpath = ROOT / 'ckpts/best_yolov5m_250000.pt' # 'ckpts/best_15000_0908.pt', 'ckpts/yolov5s.pt', 'ckpts/best_20000_cls30.pt' + modelpath = ROOT / 'ckpts/best_cls10_0906.pt' # 'ckpts/best_15000_0908.pt', 'ckpts/yolov5s.pt', 'ckpts/best_20000_cls30.pt, best_yolov5m_250000' + '''datapath为视频文件目录或视频文件''' datapath = r"D:/datasets/ym/videos/标记视频/" # ROOT/'data/videos', ROOT/'data/images' images @@ -522,7 +693,8 @@ def main_loop(opt): # p = r"D:\datasets\ym\videos\标记视频" # p = r"D:\datasets\ym\实验室测试" # p = r"D:\datasets\ym\永辉双摄视频\新建文件夹" - p = r"\\192.168.1.28\share\测试_202406\0723\0723_2\20240723-112522_" + # p = r"\\192.168.1.28\share\测试_202406\0723\0723_2\20240723-112522_" + p = r"D:\datasets\ym\联华中环" k = 0 if os.path.isdir(p): diff --git a/tracking/contrast_one2one.py b/tracking/deprecated/contrast_one2one.py similarity index 99% rename from tracking/contrast_one2one.py rename to tracking/deprecated/contrast_one2one.py index 1625275..37b10fe 100644 --- a/tracking/contrast_one2one.py +++ b/tracking/deprecated/contrast_one2one.py @@ -1,6 +1,7 @@ # -*- coding: utf-8 -*- """ Created on Fri Aug 30 17:53:03 2024 + have Deprecated! 1. 确认在相同CamerType下,track.data 中 CamerID 项数量 = 图像数 = 帧ID数 = 最大帧ID diff --git a/tracking/eventsmatch.py b/tracking/deprecated/eventsmatch.py similarity index 99% rename from tracking/eventsmatch.py rename to tracking/deprecated/eventsmatch.py index be7b080..decd9b2 100644 --- a/tracking/eventsmatch.py +++ b/tracking/deprecated/eventsmatch.py @@ -15,12 +15,15 @@ import pandas as pd import shutil import random import math - +import sys from scipy.spatial.distance import cdist import matplotlib.pyplot as plt from pathlib import Path from utils.gen import Profile + +sys.path.append(r"D:\DetectTracking\tracking") + from dotrack.dotracks_back import doBackTracks from dotrack.dotracks_front import doFrontTracks from utils.drawtracks import plot_frameID_y2, draw_all_trajectories diff --git a/tracking/dotrack/__pycache__/dotracks.cpython-39.pyc b/tracking/dotrack/__pycache__/dotracks.cpython-39.pyc index 579b1db939a07ad2cf0f4cd380c77a50633b357c..3cc23363c7954b87f6c636b57c6828951fbbc384 100644 GIT binary patch delta 2778 zcmaJ@U2Ggz6`ni0J3IUDHCe~5?cH_!6R+bq@!DzACM8N796LBPwwI*7G_1xu<9Pft zyWAN!Yio@SY05)e66ZE*g{rbHR6>FWnw1cUl0Y92s;I<|%ELUA7akDm3j$Ro5)$Xk z?#7O(YHPna-*?YB_s*R&=g#fLzbuB8P{=R9-<_ogbM9xh!foXBtwS?k)WQo9+Hg)# zCDr?apn9*1Gzv^seZYLc8iD!M0I&eCF8~XwAz&e3``&q%6B4al6bT`%l_}Rpq?P)X z@``F&ilxzzv9g@qq5R99E|RDeJO>Fm$zPXlH#`9gVhM!f2&ec{-c~ZgFL_`6|Dgxo zHgcZtmnWqW^gYY(cQ$*Pz-+0!B!Ao0NaZobP|flD3iX`J=T(#PMDT2qx=%ArvHiI` zGYWa#uuLjFZ_ev;mhDnz!RdPNlr(`EFY@076J)yb_u!@&7)K?JaGslyt|MPT^AbSH z#ahumQWw}hv>b?`H3e|9^4o|($R&O(dMCDk>LS7t!ZL!v{~GOyQ!mqUR`%Nb-W=25 z^Jb;9aY{U7fN6VlL)D6G4ny~(dj_>6!dH2DU+ff>GfY_+)f6iga8_!&b+tIiu7L{; zSTMGv8QEo}NP|dJ-L#N7UTO9`|M$Mj!qwqga>>B|skyC8_EI7<&eD&%CQ z9#yllt28v7Ih`3F$!5l;zBD~%OH47YYOu}DwMhAymIHwz#;zjddA?0tVSrpmhmQW^^Xt`9eRk%(pVZpsEu8R*<*Dlp%^gq$t-Dssr@^$N%$E2OshLtjzMd&+?T6C9&iwZMe~Wo2>h5lD8z)lt4}Km7IM5 zpP-|-Agmr0swq2B;hM4&6;VSaAsZ}(OOgH1UKYh$gngohQBy;3|JhKo1NEg_xe6l^3JCCK?j&KFx>j0yf zR3kfx>`8>D0BmnTVFksSXD3m@eqp>v>Y^KqC#@W`ZzG>c87NvixQ{sJN6 z{Bm-POz?7Y|BQlbm<33MYkg=oUmUdEfNAQPg9bHNy`*igsW0nG3ZqgkZ>W|+T?I>} zZh%1t(+&NPRfxr- zwzztfO7n19JUc`Ec*Wb+7!9C(K`EYvrnt8y&p?iA{8;DHk#m@hICTJ*7x}k36A5hk z47)b_Cc+JbR}fx9n8CBEdlbw`_?e9WGI10CNjW0-%PIe`e^_o~IG)>zwp3zWgQOD= zAgHfqxHu(aODl%{jTNn0L@AId*Sn9CN&Z&%GpS9ub0D{v)m4*~`DSmY=lkHc&41Lp(NPAAc@VJo*8V?|U%&by3 zW^K_>;5S<>G==hx!?7M3t(BW@t-{e~F}+B=SdU6}xoXUU!Jj+a?D+{~{eZ6?{sG)s z`#@6qIZpKpJ~Gfv{#MZkHVOGB|HqNyGP}2CegpES1VY{e13nyZ6Kz)^Utn$& zq$7&hFfz$=>Caqod?w{^00;VJ|)%?1g>oNOzGCA5GsS_xOL(?NS`h zPWB#e8`7meLI!q^zckby!6_5Y2pDSzdB;$ke>fEF{yn;UfZ%+o{249$T(SM;%52uD z0JDt;hP%m4J~;eX8f$>zgJpLSa3k2S5Z(u{gZO=?=aw~VKCiMrp#GurJ@y8eFZ1sW zCnU5|F@AsejK9T6uNzkfxOnV|11B(p1dS42I`$oml@OW`@Eu@pK&t&*I~GZ{0d+%{ Ykx3B#8%U!l6G;rq;p5>AVMBQOe|sdr_y7O^ delta 2760 zcma)8Yit}>6`nh@GdsIGyKB3(6FYt-wzpm<^*bbOLfa&*W4E?wY||!%Xf?Ytw#UxS zZ12pb>u9YFq`U;Bac<^F%{ZUcWmMRDd1?d9muh1VnOR0pAS~%x= zjU7`VZ0&c?cg}b2y)$#>+_}DVVJTt8<53Cz{&f1Mb2q0}6RqUJ>h2T!k4lzig`bqH z@HzRhBrx5I0E+;t0~WPnz+%Aaff-gDSR7cx)z=vzb=5~?LP$&XxN?K+;E_|FY59Q} z*gWnQ^O+6Gj;YMT`N7?zk+ceq)_V((k{zavM>*J>lXM9=$qv+CZ1m9^AQTZ!BRs)w)~5((M#FaX1USB3O*c%-l_$XD zs^eOAiF&Bpk~@vQPK3_^@NhuQ#k}Lz470@bS@4Y6W{{4FZSs&~m4@gSP#r_{DcjBD zL1-Yc96t~YRm1cw`{(VClDF7&2i}I7E z)>k4y_;REym(_9z)mO+$wB`wywVEd;JQcYdDdUYmks(~lrnGp?vyqmlc{Z|=R=g}_ zqUA(6xea>9l6;=f>sA7NA`&Y{%dz!{{|{isI-?&yEQB#3gq8wHae;|)^t?=4Mbs$A z!0r`xylj9yDr{I{(STokn*^9Z%p}>_)&>0%RN0x%{sA`7)}r?p-1##*fh5{Gl^)^j zR#JlRU|w6}XQ!|x+Ysgu<^jfL({=O?WCs!MMZou-hjOQ!0-ZtrIKoZ@ijjEEE4o3( z_1rTy^*DR4t$mWmkJ#XI{0TQ_(tyV%4{svVn}}ZU{26SQur78M9?6+`o6as5Y}$ou zjIm?w9aB89Hlce2rh~r94V-a<;gtVjNul+M!MZpO;!TwOqLb&?=; za)Kn}>c{O*5;Doob&gj=SH#QYVQ3jnzL=*9ZfFr<2_T)QHJPke8sZ_qVXn?W_ZeCn zhI!a`^3ExfaxLe%R$y|a5Li3}0D8b-fg=J(YoaVyg_u3Kvz0tjo!_}g;tR0aEcCR8 zVdU(_uGB%%9y@_1L11lYJEzX3oeArd{PC-psgIyxF1 z)LTV7w_4v^J=8r!y6{LzH_+`ch~nW|(RCg#+H2*M1~+FHd-juAcCBZIe6_kO)hol3 zc&ImZKolG*=$q@=^c!eBg;|Pk2ckc(UwZ_adu}P?SU!E5z0%vIz6G*xv0wF89(WtG zR0M43wFLSLbcoP9Xbk{x)x;;c^>q6=gs!sZ(yx)H*rR=S!4bCFmm*d6qrP_XD*JWc zFnPHe-F=R9YfggXTRLjSNT51M0Gs|7FP=t zj%tdRoURuSl>P=4zeRWj6=A40+s~NmMwZL22|uVF+_$+lWa$uQ+=&@V*0FeftstFX z8BV@{Iwc+k{qDfboCuo>^pb909QZJ->Kci$$!th{vPsf^C7=F< zy*oHY-eakukKp!n5BHJ}*wk=0(HR~7LHGNRuw`RBau8}D=j99cG{dP%KV;)0juyhT z-)BD@X^Y}kTGk>rMn-%7g;Piv7T+xzTKMt8qkb`)5!K^wWBW#X$jj{HXv+xJ55-4M ze}{m#f&LZYBLHsT*PfHh+rffoQ3WT{30vLUq|rAZ{uTDK(GCr*^lj`9qlZZy+qZXL q<2{(KAv7UOAiM$ZRjR!O%nofz<6M;c^ZPUwmKiHcN_?)o=zg(X;k(ZZ?0SHp!kEEq< diff --git a/tracking/dotrack/__pycache__/dotracks_front.cpython-39.pyc b/tracking/dotrack/__pycache__/dotracks_front.cpython-39.pyc index cf6b1544d156625ffd358e6d8a37e508e432fac7..73205fda069cf19c35d9ef21320877bff369368d 100644 GIT binary patch delta 1167 zcmaJ=O-~a+7~a|Kb{D$KM@qtn7D|Mg#Se%dfPj^VL@r{CMv`i>Svpf%-FBPVEv8V4i{{-V3Z_+?g1+Yz(kNXOf@El2LRsI3{-(L5~?g4OH;BtlHEHtTsVRQy__Q_rdbGf;<(zbm^L$u ztud_@JNLiz)?}?%)*XYU*=utxDJi7cH}he9_-6r<+Mn%uq|If7{XG4Edc~*Nq90}} zVRn_$fR2AqDFPe-9F^-~*{c(-!gOc7FDp5p|ay7 zl;_x6`wHr2pY6weQpL8E6Z;o>?y0s4usP_0=ry+6cY5eLIC1-*NyvhN>vV~I>KopX z{PGaJAr@|w{J@JYU*cV))~FIH4w0@vB2f(LO>UNm7d0pe=}joPBTGEG6$auy>JT~) zq12P0Qgb6vA#~F5_|uTE#FkqGOMOD#75HqUe-y2-?f%VJ%a{)P-oLxk3){`YG6BmA zsJC6W=!@%BB);#uC!WqAK;-)YhH$Gwc!wsk40F+(p%8UUZn!QEimuCb!LHtb91R0;D%4~pt|gs&`s4smiiB?V()qY delta 1183 zcmaJ>%}*0S6yMqJ(p}O9P*4g*ps)}~BN|LmGy&ts0b-1jRFlopnbL)Ax6E!ey=bB) zCVC=sH-?MxXz(vkt|lgWnwv+D{0Gj=7QsVplQ-|Z`MuA1Z{HLS3$|z5Jres(M2A(d zXXoy&G670u2?8hwpe(af36#28R)GXns0CVGFYAKW1EX%1O(5NppaIQS5;T$iQYojP zd|z@>d$rPl186qJUS-EcyDcwp1^;Qk2b|Sd97mz@e361p3aZ#-3T%?E;AdK}7MC*z z`|=?eOEI2;xP##r;?`!|IWF~**J?N}*kLXwzW%|DC%7Y{pUi0!mpOtZ*Xu_cwJ<>I zt$4-5G45tvIJVA_yk1a00<4g4+Tchx{LE?m)MB1Tlko+1(6k@9Rg6$Qe1f{hD<<~O z^wrT$rhQ%%g%#h6k^9t-Yi`YJKu5tT@=Ko_8sPAguJOKHNjw}GIr3fYBkP7WlV>Ui zh%CAWE}fX=^{HuYg2y=NR_V=SgVItbQ>#;;``-$03p+;E90T{0s(D)%RrHh3=EGzH zra8nq7)U)*zzEs3@@Gbv#*wKO)x0L68jRab#9rcqH4Dy@A69#GmI0{lHJhjbsS^9p z$zkDEJm3`Bu`hu%d2c_?h;9iYMrrcE>b)o13J=L!$NE$v+nM3PWf2kscKp`)?Ghtv z_!@ba8QQ+X71uer!3Z^~LFmN`7ikJLT6KikV`08eRIP-~HZ`lri(42)c!is+2@?-* zMIoC!;d_p&(%YfmNH!&M`jYgEWGuS?R>_0xX40D^bMhto_IZXoTjXStlNa2F?YfnK zO-uy^f$N^yhd~Yz6&sA>OvGK8z%tAwvxvFY>7j<}!m#4HRAYrS+oDFAX~ljJ&9lO` zkXU3aGxP>EVJO51t4yZpWZ|ngY;?-vPEY0Vx9ilrS`T3>K+D`w#6Lu;#!}&b`41lo B^t=E7 diff --git a/tracking/dotrack/__pycache__/track_back.cpython-39.pyc b/tracking/dotrack/__pycache__/track_back.cpython-39.pyc index 777090c58923b01d175b1dc92a4a106e1f32fbae..661bab5b9854605ea23e7a4b5321fe10a56cb8fa 100644 GIT binary patch delta 2000 zcmbtVO>7%Q6rS1jde`=@y>|SUq-l~uq&h_5PgSUB8j+TU9tuU2wyacE8}B-?<3Glm zD3rBaDV$IbjrK$(q=Z|!m52j3uG~1Hm5?fNp-BAn&CEp23$h^^SMPl+9K;#;CIWDD<+QhfVXIaZ=UXKSySLlKc zSz&+`4p?!36<0_%;z~PFkJe;YswvPha4ij!ED=aI+LhfnFo`XCp4{ot z8@IX&3{_9DqZNT0BaR?05IZ_by0K@?7yI)V4t?YSe`&x!@vQkG@$boc?+#^oFYc*X zSY2Ox@)`klCS+xJYt56~q!;tzxTGT1Dd{CVb$?V54rdEb&Elvc*b3A&wJT9_q)wXK z!{FMX`~M0~c65(=8Z;mYi%tWg{g;3`ro6~b#!Kx|NGs?{d!M0d8`T)8<8!~}f~ zY5x~>WCk}ZI|1V1KOo*NejKV2ZV)?LhNBv3B5EM_~5y@mb}*J-p3xnXTukjC&IX;VD| z{FvoBhEnbHBN(x2XFrBk?F>XQl;(QF#2`T&QD~n)yzi01!JtpPZ)H|n>qa89;)4`g zeGo2?GjUkia%(fh)ndV%XRp77C{g-PvH?FRHq|U7bhrx#Qfgx$xrAc7W!cX z1ml92TtY4iq7-Mk|CxS@&imi#$7sR-NuSOhxnwe6x4k!-{z{mBAK=Q}&++&DLce>P zKrxD;1g`pG(*I-V#Y;Q5g$=x<+Sp=G7DN%M1~fnY#`@M({7a^%xgdd671;q z$86sJp>Vl}r_x=mSC^TLbBYPCQFlx;keSnI)i)e|Y@Mdt3FPuRKfgf~4l*$8b@1Rh k29|eNOXW_8$ zM{QXXAmxZev?qE>jvy{z{(x4TxN<_v0ZvF2d8Qs!#jlfSk-KkzY(8uZdgQpgTR*9oH>P_OPuC^~;$~eMXq>?`P!lw2?(df+5 zK|#(!RI#%n{zlaifR#Zu6fMc?Z|8u-DZANlg2hCiN%T^pmlJ(9(JP5wWqAl@V-LhQ zA|1r3=vVpHOJzV6iHV?Maoe`oV;ohzpdzp##Pni+G&-+Ew^J|fF@cbP98!k{q$V5* zZP37kgnb}g|hJqhHV_)Nb&`b8PtV}FHOm^GlH zt`3!}P!AhOMip3LCX|D0m<}~8W0>qyV3{y`pH+opYv~~?vZ~;y&>#IsrlhYoI^^EV zg!*y#|4L2{b0H0NXnGD3=K;~~BA|EqP&zDx`6Ein&IVY~QwGn%%bW3xM=2}j)tIrPL>k!M#YHYgf33M+-U+eReaklDOL5sPj*KGN5 z#%sU{4wx0Veq{_^o?^~;G|u4IM$=-B%h(zwk^;BB9V>O~nguh&(Q0mb52kBiV61w6 zH%*-O{AMe_=vepso-DE2Xw^-gL_?JLXAs|y$Rp{E(Yjt(X`D&CILV{eJ4u0jM1#sU zn%5HSH4@za9uC4<*5U7;0YS1k3XdSs0v)9Vu}t|R8lC0*yL75dpuG|Z#s%-TjAJPf z6^-Sip9;@UECPvTi!tkZEcxCIH&!gR={H$WNkKbL6=#gTo1_R4A9r?&p9^^p;O4DQ z@%QZln~G+PQCg198YkbZ;T!_H0g6$?3M+w%)pcgoR$vF&0Gf7i3_5+`N^{FS*I2@> zTtWlxIK<#}!~@w}bjKJTeYh0dF4GUJz_Y)M{xH6JlHXo3-^0Gn!9nrOH(CKqZ(sc} z`fhOTY0UK*?M~5`w_rEx+pWMg9S_nsZ1?BrwV`u!A7C}y^}`2MnJOT{&fVEM) zk76IiO%xx2h;`Gnw=Cbc-K{Ot?CHcPy713|0w@>VD~*pMs$^ruG@Ygm-t(A2hNHZF ooh?R>51&8H(4{BK@sib7>P@G$<<7%Lf%sUcB&$@VS$GQKKYYH&O#lD@ diff --git a/tracking/dotrack/dotracks.py b/tracking/dotrack/dotracks.py index 848cc70..e1341e7 100644 --- a/tracking/dotrack/dotracks.py +++ b/tracking/dotrack/dotracks.py @@ -8,10 +8,11 @@ import numpy as np import cv2 from pathlib import Path from scipy.spatial.distance import cdist -from utils.mergetrack import track_equal_track, readDict +from tracking.utils.mergetrack import track_equal_track, readDict curpath = Path(__file__).resolve().parents[0] curpath = Path(curpath) +parpath = curpath.parent class MoveState: """商品运动状态标志""" @@ -297,11 +298,15 @@ class Track: front, 前置摄像头 ''' if camerType=="back": - incart = cv2.imread("./shopcart/cart_tempt/incart.png", cv2.IMREAD_GRAYSCALE) - outcart = cv2.imread("./shopcart/cart_tempt/outcart.png", cv2.IMREAD_GRAYSCALE) + incart = cv2.imread(str(parpath/'shopcart/cart_tempt/incart.png'), cv2.IMREAD_GRAYSCALE) + outcart = cv2.imread(str(parpath/'shopcart/cart_tempt/outcart.png'), cv2.IMREAD_GRAYSCALE) else: - incart = cv2.imread("./shopcart/cart_tempt/incart_ftmp.png", cv2.IMREAD_GRAYSCALE) - outcart = cv2.imread("./shopcart/cart_tempt/outcart_ftmp.png", cv2.IMREAD_GRAYSCALE) + incart = cv2.imread(str(parpath/'shopcart/cart_tempt/incart_ftmp.png'), cv2.IMREAD_GRAYSCALE) + outcart = cv2.imread(str(parpath/'shopcart/cart_tempt/outcart_ftmp.png'), cv2.IMREAD_GRAYSCALE) + + # incart = cv2.imread('./cart_tempt/incart_ftmp.png', cv2.IMREAD_GRAYSCALE) + # outcart = cv2.imread('./cart_tempt/outcart_ftmp.png', cv2.IMREAD_GRAYSCALE) + xc, yc = self.cornpoints[:,0].clip(0,self.imgshape[0]-1).astype(np.int64), self.cornpoints[:,1].clip(0,self.imgshape[1]-1).astype(np.int64) x1, y1 = self.cornpoints[:,6].clip(0,self.imgshape[0]-1).astype(np.int64), self.cornpoints[:,7].clip(0,self.imgshape[1]-1).astype(np.int64) diff --git a/tracking/dotrack/dotracks_back.py b/tracking/dotrack/dotracks_back.py index 48bf025..19956d9 100644 --- a/tracking/dotrack/dotracks_back.py +++ b/tracking/dotrack/dotracks_back.py @@ -5,7 +5,7 @@ Created on Mon Mar 4 18:36:31 2024 @author: ym """ import numpy as np -from utils.mergetrack import track_equal_track +from tracking.utils.mergetrack import track_equal_track from scipy.spatial.distance import cdist from .dotracks import doTracks, ShoppingCart from .track_back import backTrack diff --git a/tracking/dotrack/dotracks_front.py b/tracking/dotrack/dotracks_front.py index e2b763a..60101f5 100644 --- a/tracking/dotrack/dotracks_front.py +++ b/tracking/dotrack/dotracks_front.py @@ -5,7 +5,7 @@ Created on Mon Mar 4 18:38:20 2024 @author: ym """ import numpy as np -from utils.mergetrack import track_equal_track +# from tracking.utils.mergetrack import track_equal_track from .dotracks import doTracks from .track_front import frontTrack diff --git a/tracking/dotrack/track_back.py b/tracking/dotrack/track_back.py index 0a0f9b1..20512bc 100644 --- a/tracking/dotrack/track_back.py +++ b/tracking/dotrack/track_back.py @@ -10,6 +10,10 @@ from scipy.spatial.distance import cdist from sklearn.decomposition import PCA from .dotracks import MoveState, Track +from pathlib import Path +curpath = Path(__file__).resolve().parents[0] +curpath = Path(curpath) +parpath = curpath.parent class backTrack(Track): # boxes: [x1, y1, x2, y2, track_id, score, cls, frame_index, box_index] @@ -93,9 +97,9 @@ class backTrack(Track): maxbox_iou, minbox_iou:track中最大、最小 box 和boxes流的iou,二者差值越小,越接近 1,表明track的运动型越小。 incartrates: 各box和incart的iou时序,由小变大,反应的是置入过程,由大变小,反应的是取出过程 ''' - incart = cv2.imread("./shopcart/cart_tempt/incart.png", cv2.IMREAD_GRAYSCALE) - outcart = cv2.imread("./shopcart/cart_tempt/outcart.png", cv2.IMREAD_GRAYSCALE) - cartboarder = cv2.imread("./shopcart/cart_tempt/cartboarder.png", cv2.IMREAD_GRAYSCALE) + incart = cv2.imread(str(parpath/"shopcart/cart_tempt/incart.png"), cv2.IMREAD_GRAYSCALE) + outcart = cv2.imread(str(parpath/"shopcart/cart_tempt/outcart.png"), cv2.IMREAD_GRAYSCALE) + cartboarder = cv2.imread(str(parpath/"shopcart/cart_tempt/cartboarder.png"), cv2.IMREAD_GRAYSCALE) incartrates = [] temp = np.zeros(incart.shape, np.uint8) diff --git a/tracking/module_analysis.py b/tracking/module_analysis.py index a892003..16050dd 100644 --- a/tracking/module_analysis.py +++ b/tracking/module_analysis.py @@ -98,13 +98,10 @@ def read_imgs(imgspath, CamerType): flist = file.split('_') if len(flist)==4 and ext in ImgFormat: camID, frmID = flist[0], int(flist[-1]) - imgpath = os.path.join(imgspath, filename) - img = cv2.imread(imgpath) - if camID==CamerType: + img = cv2.imread(os.path.join(imgspath, filename)) imgs.append(img) frmIDs.append(frmID) - if len(frmIDs): indice = np.argsort(np.array(frmIDs)) imgs = [imgs[i] for i in indice] @@ -227,7 +224,7 @@ def do_tracking(fpath, savedir, event_name='images'): '''4.2 在 imgs 上画框并保存''' imgs_dw = draw_tracking_boxes(imgs, trackerboxes) for fid, img in imgs_dw: - img_savepath = os.path.join(save_dir, CamerType + "_fid_" + f"{fid}.png") + img_savepath = os.path.join(save_dir, CamerType + "_fid_" + f"{int(fid)}.png") cv2.imwrite(img_savepath, img) '''4.3.2 保存轨迹选择对应的子图''' @@ -238,7 +235,7 @@ def do_tracking(fpath, savedir, event_name='images'): x1, y1, x2, y2 = int(xyxy[0]/2), int(xyxy[1]/2), int(xyxy[2]/2), int(xyxy[3]/2) subimg = img[y1:y2, x1:x2] - subimg_path = os.path.join(subimg_dir, f'{CamerType}_tid{int(tid)}_{int(fid-1)}_{int(bid)}.png' ) + subimg_path = os.path.join(subimg_dir, f'{CamerType}_tid{int(tid)}_{int(fid)}_{int(bid)}.png' ) cv2.imwrite(subimg_path, subimg) # for track in tracking_output_boxes: # for *xyxy, tid, conf, cls, fid, bid in track: @@ -270,8 +267,9 @@ def tracking_simulate(eventpath, savepath): # else: # return # ============================================================================= - - enent_name = os.path.basename(eventpath)[:15] + bname = os.path.basename(eventpath) + idx = bname.find('2024') + enent_name = bname[idx:(idx+15)] '''2. 依次读取 0/1_track.data 中数据,进行仿真''' illu_tracking, illu_select = [], [] @@ -289,7 +287,9 @@ def tracking_simulate(eventpath, savepath): if img_tracking is not None: illu_tracking.append(img_tracking) - '''3. 前、后摄,原始轨迹、本地tracking输出、现场算法轨迹选择前、后,共幅8图''' + '''3. 共幅8图,上下子图显示的是前后摄,每一行4个子图,分别为: + (1) tracker输出原始轨迹; (2)本地tracking输出; (3)现场算法轨迹选择前轨迹; (4)现场算法轨迹选择后的轨迹 + ''' if len(illu_select)==2: Img_s = np.concatenate((illu_select[0], illu_select[1]), axis = 0) H, W = Img_s.shape[:2] @@ -307,15 +307,15 @@ def tracking_simulate(eventpath, savepath): Img_t = illu_tracking[0] else: Img_t = None - - - + + '''3.1 单独另存保存完好的 8 轨迹图''' basepath, _ = os.path.split(savepath) trajpath = os.path.join(basepath, 'trajs') if not os.path.exists(trajpath): os.makedirs(trajpath) traj_path = os.path.join(trajpath, enent_name+'.png') + imgpath_tracking = os.path.join(savepath, enent_name + '_ing.png') imgpath_select = os.path.join(savepath, enent_name + '_slt.png') imgpath_ts = os.path.join(savepath, enent_name + '_ts.png') @@ -327,9 +327,9 @@ def tracking_simulate(eventpath, savepath): cv2.imwrite(imgpath_ts, Img_ts) cv2.imwrite(traj_path, Img_ts) else: - if Img_s: cv2.imwrite(imgpath_select, Img_s) - if Img_t: cv2.imwrite(imgpath_tracking, Img_t) - + if Img_s: cv2.imwrite(imgpath_select, Img_s) # 不会执行到该处 + if Img_t: cv2.imwrite(imgpath_tracking, Img_t) # 不会执行到该处 + @@ -382,11 +382,13 @@ def main(): eventPaths: data文件地址,该 data 文件包括 Pipeline 各模块输出 SavePath: 包含二级目录,一级目录为轨迹图像;二级目录为与data文件对应的序列图像存储地址。 ''' - eventPaths = r'\\192.168.1.28\share\测试_202406\0723\0723_3' + # eventPaths = r'\\192.168.1.28\share\测试_202406\0723\0723_3' + eventPaths = r"D:\DetectTracking\tracking\images" + savePath = r'D:\contrast\dataset\result' k=0 for pathname in os.listdir(eventPaths): - pathname = "20240723-163121_6925282237668" + pathname = "20240925-142635-3e3cb61a-8bbe-45f2-aed7-a40de7f2d624_6924743924161" eventpath = os.path.join(eventPaths, pathname) savepath = os.path.join(savePath, pathname) diff --git a/tracking/tracking_test.py b/tracking/tracking_test.py index d98b9be..6ea8015 100644 --- a/tracking/tracking_test.py +++ b/tracking/tracking_test.py @@ -80,14 +80,14 @@ def save_subimgs(vts, file, TracksDict): cv2.imwrite(str(imgdir) + f"/{tid}_{fid}_{bid}.png", img) def have_tracked(): - trackdict = r'./data/trackdicts_20240608' + trackdict = r'./data/trackdicts' alltracks = [] k = 0 gt = Profile() for filename in os.listdir(trackdict): # filename = 'test_20240402-173935_6920152400975_back_174037372.pkl' - filename = '6907149227609_20240508-174733_back_returnGood_70f754088050_425_17327712807.pkl' - filename = '6907149227609_20240508-174733_front_returnGood_70f754088050_425_17327712807.pkl' + # filename = '6907149227609_20240508-174733_back_returnGood_70f754088050_425_17327712807.pkl' + # filename = '6907149227609_20240508-174733_front_returnGood_70f754088050_425_17327712807.pkl' file, ext = os.path.splitext(filename) filepath = os.path.join(trackdict, filename) @@ -119,11 +119,14 @@ def have_tracked(): save_subimgs(vts, file, TracksDict) edgeline = cv2.imread("./shopcart/cart_tempt/edgeline.png") img_tracking = draw_all_trajectories(vts, edgeline, save_dir, file) + + trackpath = save_dir.joinpath(f'{file}.png') + cv2.imwrite(str(trackpath), img_tracking) print(file+f" need time: {gt.dt:.2f}s") - k += 1 - if k==1: - break + # k += 1 + # if k==1: + # break if len(alltracks): drawFeatures(alltracks, save_dir) diff --git a/tracking/utils/__pycache__/plotting.cpython-39.pyc b/tracking/utils/__pycache__/plotting.cpython-39.pyc index 751d4080ec113aea32cd5d061ced51988b6ba853..ab513f6b2d59fb87433800383ff312d5741762b7 100644 GIT binary patch delta 47 zcmaE!@;HSzk(ZZ?0SHzc|D1MwBkw+Kraugm&uYsv-kSVY`@-gfI&)bV1vbYUaxek_ DxZe@? delta 52 zcmaEy@;rq%k(ZZ?0SMlnUXXTjBkw+KCI-gIXSL-S?@fNIeSsx~MS@}TUY)rtj3S$( H4LKMA>&g*$ diff --git a/tracking/utils/__pycache__/read_data.cpython-39.pyc b/tracking/utils/__pycache__/read_data.cpython-39.pyc index f60b5d174ac0a5446a8743142c4072684c0f188f..c48daf6291dee7427b60e80931ed9fb25a0b3cbf 100644 GIT binary patch delta 1258 zcmZvaO>7%g5XX1y_3qkhudy3Db{zYVlB8~umXNkkh?7ew!U!5liq%lqIN5dLB(;-g zmy)tp5f-9cswKn60U_)Q;(+*&IRUDWsNje=(8Ci*oRH|D5<)_)5E5@TsDQ*i>9_l4 z=FR-y%)U~1qhORHk&q;wE7yLj%pLy3I3dF{o|fnJ>#d*@oReI5=4$U_IS-cX-=Ubf(<9o5mh0Ft9Pk+jq@n$mi>6LE|#U{T3Wj^87Jx6TOeX>fgP z-hqzVlscLd=mMSI(s%#)`${x*nUAy!<%*Wfs) znlOisT7Vn)nL3qu-}P_rI!V{hu6q|riHlGR{OlTP+GupwO1F}K3z3dh|9r0SQNdAB7-KoMX1U()nJ3ExU>Kmz^g&GZ_bSSJJsG;|ggNaE#mTSSHjN+Zi+pNG8)|BbpEM0iBF z7g!lz9mplT$sD01UW4|ghhGd#!xY{gxL02xmqoDgSY{YZJexTRkK=A;GP^-$62N0y zoAsvIuxpJvGgr>D=j`9{r%VZ4ynpbap;d}=1@bZvQo~Je{QpkBSmE(An1sPcqx_O2Yx^+MB*RdmxA^S2qa{IkoXNI?H3S2LIUn}5n~d*(#JmM ze(!ns+}Gx|<^mBlU*z=rc&-)hxYh=7(R1DLlZ1bIhH%)M2f26A8w8K+u2i&A%aCzZIsn7?jx>^% zdFHZQRbACqsel?vMRw~Aa+$vI2Pt!x>~E1$xmMMeml~^@aobcX_0qD8!#+Kn1}}IW z84w*J_&|hl2fpt+1&4dT`!0d>9=!v^Pq99VL%|3>6UaZDWxj(90fr32BtwwG;*ILM zMkbg&PLXw6Vx?NwR!XfW$Sm^?+bZTG1r&ml@G8y(vv9n3G580>SX@gW+Dg4t*0K)b zVMhws4E4hfUJK25WnrmA$_-VM@$*n_gcW0Xh*nbTRb4YkAJf~#vFv+wjNwqYAM!XG zUVs9=7=92w#BajKpx8_GEdiXsrz1J{NhWvV^>`e=j7-2d{uLR8n>ZT1KVvt%!1ixP zA7dtKmD8**sLhooyallFZ zAYOwoh7$FJ!cLSJTnrL}kD?D>Pqe9WV4#>eN9`=^Ww=u{1XRw(b(%biZw#cP_8f97 zi2XbEW`$o26kr;K7{#w?&cVEf1TkVh{Vjp+6do2d8Om22W)i1b|$_uLm*CetI@# z35udN%8FvS^edNF)<_1QO3mh)bd!V_;uMy6wM2A!l?`&3`HnLb8UD>rgWgOP0?#wG SyK2~1Yzz;j=b(;8djH=f>NhF? diff --git a/tracking/utils/plotting.py b/tracking/utils/plotting.py index c5d50f0..50a6dc1 100644 --- a/tracking/utils/plotting.py +++ b/tracking/utils/plotting.py @@ -333,7 +333,7 @@ def draw_tracking_boxes(imgs, tracks, scale=2): annotator.box_label(pt2, label, color=color) img = annotator.result() - subimgs.append((fid-1, img)) + subimgs.append((fid, img)) return subimgs diff --git a/tracking/utils/read_data.py b/tracking/utils/read_data.py index bc380b9..7d4395b 100644 --- a/tracking/utils/read_data.py +++ b/tracking/utils/read_data.py @@ -79,18 +79,21 @@ def extract_data(datapath): feats.append(str_to_float_arr(feat)) if line.find("output_box:") >= 0: - box = str_to_float_arr(line[line.find("output_box:") + 11:].strip()) - tboxes.append(box) # 去掉'output_box:'并去除可能的空白字符 - index = find_samebox_in_array(boxes, box) + assert(len(boxes)>=0 and len(boxes)==len(feats)), f"{datapath}, {datapath}, len(boxes)!=len(feats)" - assert(len(boxes)==len(feats)), f"{datapath}, {datapath}, len(boxes)!=len(feats)" + box = str_to_float_arr(line[line.find("output_box:") + 11:].strip()) + index = find_samebox_in_array(boxes, box) if index >= 0: + tboxes.append(box) # 去掉'output_box:'并去除可能的空白字符 + # feat_f = str_to_float_arr(input_feats[index]) feat_f = feats[index] norm_f = np.linalg.norm(feat_f) feat_f = feat_f / norm_f tfeats.append(feat_f) - + + + if len(boxes): bboxes.append(np.array(boxes)) if len(feats): ffeats.append(np.array(feats)) if len(tboxes): trackerboxes = np.concatenate((trackerboxes, np.array(tboxes))) diff --git a/tracking/utils/videot.py b/tracking/utils/videot.py index a6b9b91..ca349b6 100644 --- a/tracking/utils/videot.py +++ b/tracking/utils/videot.py @@ -80,13 +80,12 @@ def videosave(bboxes, videopath="100_1688009697927.mp4"): cap.release() def main(): - videopath = r'\\192.168.1.28\share\测试_202406\0822\A_1724314806144' - videopath = r'D:\videos' - savepath = r'D:\videos' + videopath = r'D:\datasets\ym' + savepath = r'D:\datasets\ym' # video2imgs(videopath, savepath) k = 0 for filename in os.listdir(videopath): - # filename = "20240822-163506_88e6409d-f19b-4e97-9f01-b3fde259cbff.ts" + filename = "20240929-155533.ts" file, ext = os.path.splitext(filename) if ext not in VideoFormat: diff --git a/tracking/说明文档.txt b/tracking/说明文档.txt index 4b1700d..e69de29 100644 --- a/tracking/说明文档.txt +++ b/tracking/说明文档.txt @@ -1,36 +0,0 @@ -tracking_test.py - have_tracked(): - 轨迹分析测试。遍历track_reid.py输出的文件夹trackdict下的所有.pkl文件。 - -time_test.py - 统计Pipeline整体流程中各模块耗时 - -module_analysis.py - main(): - 遍历文件夹下的每一个子文件夹,对子文件夹执行tracking_simulate() 函数; - - main_loop(): - (1) 根据 deletedBarcode.txt 生成事件对,并利用事件对生成存储地址 - (2) 调用 tracking_simulate() 函数 - - tracking_simulate(eventpath, savepath): - (1) 根据event_names获取事件名enent_name - (2) 遍历并执行 eventpath 文件夹下的 0_track.data、1_track.data 文件,并调用do_tracking() 执行 - (3) 将前后摄、本地与现场,工8幅子图合并为1幅大图。 - - do_tracking(fpath, savedir, event_name='images') - -enentmatch.py - 1:n 模拟测试,have Deprecated! - -contrast_analysis.py - 1:n 现场测试评估。 - main(): - 循环读取不同文件夹中的 deletedBarcode.txt,合并评估。 - main1(): - 指定deletedBarcode.txt进行1:n性能评估 - -feat_select.py - 以下两种特征选择策略下的比对性能比较 - (1) 现场算法前后摄特征组合; - (2) 本地算法优先选择前摄特征; diff --git a/说明文档.txt b/说明文档.txt new file mode 100644 index 0000000..e9f2775 --- /dev/null +++ b/说明文档.txt @@ -0,0 +1,129 @@ +三个功能模块 +1. Yolo + Tracker + Resnet, 其中 Resnet 的实现在./contrast中 + track_reid.py + +2. 轨迹分析模块,目录为:./tracking + (1) 基于模块(Yolo + Tracker + Resnet)的输出 + tracking_test.py + + (2) 基于测试过程数据(track.data, tracking_output.data)的输出 + module_analysis.py + +3. 比对分析模块,目录为:./contrast + 2个场景:1:1,1:n + 1:1场景: + (1) OneToOneCompare.txt + one2one_onsite.py + (2) 利用本地算法进行特征提取 + one2one_contrast.py + 1:n场景: + (1) 直接利用 deletedBarcode.txt 中数据 + one2n_contrast.py + (2) 构造取出、放入事件,设计不同的特征, + feat_select.py + + +具体实现: +./tracking + tracking_test.py + have_tracked(): + 轨迹分析测试。遍历track_reid.py输出的文件夹trackdict下的所有.pkl文件。 + + time_test.py + 统计Pipeline整体流程中各模块耗时 + + module_analysis.py + 该模块中需要借助 try...except... 捕获data文件中的异常 + main(): + 遍历文件夹下的每一个子文件夹,对子文件夹执行tracking_simulate() 函数; + + main_loop(): + (1) 根据 deletedBarcode.txt 生成事件对,并利用事件对生成存储地址 + (2) 调用 tracking_simulate() 函数 + + tracking_simulate(eventpath, savepath): + (1) 根据event_names获取事件名enent_name + (2) 遍历并执行 eventpath 文件夹下的 0_track.data、1_track.data 文件,并调用do_tracking() 执行 + (3) 将前后摄、本地与现场,工8幅子图合并为1幅大图。 + 上下子图分别显示的是前后摄,每一行4个子图,分别为: + (a) tracker输出原始轨迹; + (b) 本地tracking输出; + (c) 现场算法轨迹选择前轨迹; + (d) 现场算法轨迹选择后的轨迹 + + + do_tracking(fpath, savedir, event_name) + inputs: + fpath: 0/1_track.data文件,并核验是否存在 0/1_tracking_output.data,若不存在该文件,直接返回 None, None + + savedir: 在该文件夹下会建立3个子文件夹及一个png轨迹图 + ./savedir/event_name + ./savedir/event_name_subimgs + ./savedir/trajectory + ./savedir/event_name_ts.png + + outputs: + img_tracking:本机tracker、tracking 输出的结果比较图 + abimg: 部署算法的tracking、轨迹选择分析比较图 + + + ./utils/read_data.py + 0/1_track.data 文件保存:yolo、Resnet、tracker、tracking模块的输出 + 函数: extract_data(datapath) + 异常排除: + (1) assert len(boxes)==len(feats),确保每一帧内boxes数和feats数相等 + (2) assert(len(bboxes)==len(ffeats)), 确保关于bboxes的帧数和关于ffeats的帧数相等 + (3) assert(len(trackerboxes)==len(trackerfeats)),确保tracker输出的boxes可以对应到相应的feats上 + 这里未对 len(box)!=9、len(feat)!=256, 的情况做出约束 + 输出: + bboxes + ffeats + trackerboxes + tracker_feat_dict[f"frame_{fid}"]["feats"]{{bid}: (256,) + } + trackingboxes + tracking_feat_dict[f"track_{tid}"]["feats"]{f"{fid}_{bid}": tracker_feat_dict[f"frame_{fid}"]["feats"][bid]}) + + + + 0/1_tracking_output.data 文件保存用于比对的boxes、features + 函数: read_tracking_output(filepath) + 异常排除: + (1) assert len(feats)==len(boxes) + (2) box.size==9、feat.size=256 + + + + ./deprecated/contrast_one2one.py + 1:1 比对评估。have Deprecated! + ./enentmatch.py + 1:n 模拟测试,have Deprecated! + + +./contrast + feat_similar.py + similarity_compare_sequence(root_dir) + inputs: + root_dir:文件夹,包含"subimgs"字段,对该文件夹中的相邻图像进行相似度比较 + silimarity_compare() + 功能:对imgpaths文件夹中的图像进行相似度比较 + + feat_select.py + creatd_deletedBarcode_front(filepath) + (1) 基于 deletedBarcode.txt, 构造取出事件和相应的放入事件,构成列表并更新这些列表。 + MatchList = [(getout_event, InputList), ...] + + (2) 设计不同的特征选择方式,计算 getout 事件和各 input 事件的相似度,并保存于文件: + deletedBarcodeTest.txt + + + precision_compare(filepath, savepath) + 读取 deletedBarcode.txt 和 deletedBarcodeTest.txt 中的数据,进行相似度比较 + + + one2n_contrast.py + 1:n 比对,读取 deletedBarcode.txt,实现现场测试评估。 + main(): + 循环读取不同文件夹中的 deletedBarcode.txt,合并评估。 + main1(): + 指定deletedBarcode.txt进行1:n性能评估 \ No newline at end of file