modify 1:1 比对方式

This commit is contained in:
王庆刚
2024-12-05 10:23:03 +08:00
parent 8bbee310ba
commit 1e6c5deee4
18 changed files with 728 additions and 398 deletions

View File

@ -62,7 +62,7 @@ class Config:
# test_val = "./data/test_data_100"
# test_model = "checkpoints/best_resnet18_v11.pth"
test_model = "checkpoints/zhanting_cls22_v11.pth"
test_model = "checkpoints/zhanting_res_801.pth"

View File

@ -136,6 +136,8 @@ def stdfeat_infer(imgPath, featPath, bcdSet=None):
continue
featpath = os.path.join(featPath, f"{bcd}.pickle")
# if os.path.isfile(featpath):
# continue
stdbDict = {}
t1 = time.time()

View File

@ -11,7 +11,7 @@ Created on Fri Aug 30 17:53:03 2024
标准特征提取,并保存至文件夹 stdFeaturePath 中,
也可在运行过程中根据与购物事件集合 barcodes 交集执行
2. 1:1 比对性能测试,
func: one2one_eval(resultPath)
func: one2one_eval(similPath)
(1) 求购物事件和标准特征级 Barcode 交集,构造 evtDict、stdDict
(2) 构造扫 A 放 A、扫 A 放 B 组合mergePairs = AA_list + AB_list
(3) 循环计算 mergePairs 中元素 "(A, A) 或 (A, B)" 相似度;
@ -32,6 +32,7 @@ import os
import sys
import random
import pickle
import json
# import torch
import time
# import json
@ -47,10 +48,12 @@ from datetime import datetime
# from feat_inference import inference_image
sys.path.append(r"D:\DetectTracking")
from tracking.utils.read_data import extract_data, read_tracking_output, read_one2one_simi, read_deletedBarcode_file
from config import config as conf
from genfeats import model_init, genfeatures, stdfeat_infer
from tracking.utils.read_data import extract_data, read_tracking_output, read_similar, read_deletedBarcode_file
from tracking.utils.plotting import Annotator, colors
from feat_extract.config import config as conf
from feat_extract.inference import FeatsInterface
from utils.event import Event
from genfeats import gen_bcd_features
IMG_FORMAT = ['.bmp', '.jpg', '.jpeg', '.png']
@ -107,6 +110,10 @@ def creat_shopping_event(eventPath):
evtType = 'other'
'''================ 1. 构造事件描述字典,暂定 9 items ==============='''
event = {}
event['barcode'] = barcode
event['type'] = evtType
@ -118,7 +125,8 @@ def creat_shopping_event(eventPath):
event['back_feats'] = np.empty((0, 256), dtype=np.float64)
event['front_feats'] = np.empty((0, 256), dtype=np.float64)
event['feats_compose'] = np.empty((0, 256), dtype=np.float64)
event['one2one_simi'] = None
event['one2one'] = None
event['one2n'] = None
event['feats_select'] = np.empty((0, 256), dtype=np.float64)
@ -145,8 +153,9 @@ def creat_shopping_event(eventPath):
event['front_feats'] = tracking_output_feats
if dataname.find("process.data")==0:
simiDict = read_one2one_simi(datapath)
event['one2one_simi'] = simiDict
simiDict = read_similar(datapath)
event['one2one'] = simiDict['one2one']
event['one2n'] = simiDict['one2n']
if len(event['back_boxes'])==0 or len(event['front_boxes'])==0:
@ -215,6 +224,52 @@ def creat_shopping_event(eventPath):
return event
def plot_save_image(event, savepath):
cameras = ('front', 'back')
for camera in cameras:
if camera == 'front':
boxes = event.front_trackerboxes
imgpaths = event.front_imgpaths
else:
boxes = event.back_trackerboxes
imgpaths = event.back_imgpaths
def array2list(bboxes):
'''[x1, y1, x2, y2, track_id, score, cls, frame_index, box_index]'''
frame_ids = bboxes[:, 7].astype(int)
fID = np.unique(bboxes[:, 7].astype(int))
fboxes = []
for f_id in fID:
idx = np.where(frame_ids==f_id)[0]
box = bboxes[idx, :]
fboxes.append((f_id, box))
return fboxes
fboxes = array2list(boxes)
for fid, fbox in fboxes:
imgpath = imgpaths[int(fid-1)]
image = cv2.imread(imgpath)
annotator = Annotator(image.copy(), line_width=2)
for i, *xyxy, tid, score, cls, fid, bid in enumerate(fbox):
label = f'{int(id), int(cls)}'
if tid >=0 and cls==0:
color = colors(int(cls), True)
elif tid >=0 and cls!=0:
color = colors(int(id), True)
else:
color = colors(19, True) # 19为调色板的最后一个元素
annotator.box_label(xyxy, label, color=color)
im0 = annotator.result()
spath = os.path.join(savepath, Path(imgpath).name)
cv2.imwrite(spath, im0)
def save_event_subimg(event, savepath):
'''
功能: 保存一次购物事件的轨迹子图
@ -224,160 +279,92 @@ def save_event_subimg(event, savepath):
子图保存次序:先前摄、后后摄,以 k 为编号,和 "feats_compose" 中次序相同
'''
cameras = ('front', 'back')
k = 0
for camera in cameras:
if camera == 'front':
boxes = event['front_boxes']
imgpaths = event['front_imgpaths']
boxes = event.front_boxes
imgpaths = event.front_imgpaths
else:
boxes = event['back_boxes']
imgpaths = event['back_imgpaths']
boxes = event.back_boxes
imgpaths = event.back_imgpaths
for i, box in enumerate(boxes):
x1, y1, x2, y2, tid, score, cls, fid, bid = box
imgpath = imgpaths[i]
imgpath = imgpaths[int(fid-1)]
image = cv2.imread(imgpath)
subimg = image[int(y1/2):int(y2/2), int(x1/2):int(x2/2), :]
camerType, timeTamp, _, frameID = os.path.basename(imgpath).split('.')[0].split('_')
subimgName = f"{k}_cam-{camerType}_tid-{int(tid)}_fid-({int(fid)}, {frameID}).png"
subimgName = f"cam{camerType}_{i}_tid{int(tid)}_fid({int(fid)}, {frameID}).png"
spath = os.path.join(savepath, subimgName)
cv2.imwrite(spath, subimg)
k += 1
# basename = os.path.basename(event['filepath'])
print(f"Image saved: {os.path.basename(event['filepath'])}")
print(f"Image saved: {os.path.basename(event.eventpath)}")
def one2one_eval(resultPath):
# stdBarcode = [p.stem for p in Path(stdFeaturePath).iterdir() if p.is_file() and p.suffix=='.pickle']
stdBarcode = [p.stem for p in Path(stdBarcodePath).iterdir() if p.is_file() and p.suffix=='.pickle']
'''购物事件列表,该列表中的 Barcode 存在于标准的 stdBarcode 内'''
evtList = [(p.stem, p.stem.split('_')[-1]) for p in Path(eventFeatPath).iterdir()
if p.is_file()
and p.suffix=='.pickle'
and (len(p.stem.split('_'))==2 or len(p.stem.split('_'))==3)
and p.stem.split('_')[-1].isdigit()
and p.stem.split('_')[-1] in stdBarcode
]
barcodes = set([bcd for _, bcd in evtList])
'''标准特征集图像样本经特征提取并保存,运行一次后无需再运行'''
stdfeat_infer(stdBarcodePath, stdFeaturePath, barcodes)
'''========= 构建用于比对的标准特征字典 ============='''
stdDict = {}
for barcode in barcodes:
stdpath = os.path.join(stdFeaturePath, barcode+'.pickle')
with open(stdpath, 'rb') as f:
stddata = pickle.load(f)
stdDict[barcode] = stddata
'''========= 构建用于比对的操作事件字典 ============='''
evtDict = {}
for event, barcode in evtList:
evtpath = os.path.join(eventFeatPath, event+'.pickle')
with open(evtpath, 'rb') as f:
evtdata = pickle.load(f)
evtDict[event] = evtdata
'''===== 构造 3 个事件对: 扫 A 放 A, 扫 A 放 B, 合并 ===================='''
AA_list = [(event, barcode, "same") for event, barcode in evtList]
AB_list = []
for event, barcode in evtList:
dset = list(barcodes.symmetric_difference(set([barcode])))
idx = random.randint(0, len(dset)-1)
AB_list.append((event, dset[idx], "diff"))
mergePairs = AA_list + AB_list
'''读取事件、标准特征文件中数据,以 AA_list 和 AB_list 中关键字为 key 生成字典'''
def data_precision_compare(stdfeat, evtfeat, evtMessage, save=True):
evt, stdbcd, label = evtMessage
rltdata, rltdata_ft16, rltdata_ft16_ = [], [], []
for evt, stdbcd, label in mergePairs:
event = evtDict[evt]
## 判断是否存在轨迹图像文件夹,不存在则创建文件夹并保存轨迹图像
pairpath = os.path.join(subimgPath, f"{evt}")
if not os.path.exists(pairpath):
os.makedirs(pairpath)
save_event_subimg(event, pairpath)
## 判断是否存在 barcode 标准样本集图像文件夹,不存在则创建文件夹并存储 barcode 样本集图像
stdImgpath = stdDict[stdbcd]["imgpaths"]
pstdpath = os.path.join(subimgPath, f"{stdbcd}")
if not os.path.exists(pstdpath):
os.makedirs(pstdpath)
ii = 1
for filepath in stdImgpath:
stdpath = os.path.join(pstdpath, f"{stdbcd}_{ii}.png")
shutil.copy2(filepath, stdpath)
ii += 1
##============================================ float32
stdfeat = stdDict[stdbcd]["feats"]
evtfeat = event["feats_compose"]
matrix = 1 - cdist(stdfeat, evtfeat, 'cosine')
simi_mean = np.mean(matrix)
simi_max = np.max(matrix)
stdfeatm = np.mean(stdfeat, axis=0, keepdims=True)
evtfeatm = np.mean(evtfeat, axis=0, keepdims=True)
simi_mfeat = 1- np.maximum(0.0, cdist(stdfeatm, evtfeatm, 'cosine'))
rltdata.append((label, stdbcd, evt, simi_mean, simi_max, simi_mfeat[0,0]))
matrix = 1 - cdist(stdfeat, evtfeat, 'cosine')
simi_mean = np.mean(matrix)
simi_max = np.max(matrix)
stdfeatm = np.mean(stdfeat, axis=0, keepdims=True)
evtfeatm = np.mean(evtfeat, axis=0, keepdims=True)
simi_mfeat = 1- np.maximum(0.0, cdist(stdfeatm, evtfeatm, 'cosine'))
rltdata = [label, stdbcd, evt, simi_mean, simi_max, simi_mfeat[0,0]]
##============================================ float16
stdfeat_ft16 = stdfeat.astype(np.float16)
evtfeat_ft16 = evtfeat.astype(np.float16)
stdfeat_ft16 /= np.linalg.norm(stdfeat_ft16, axis=1)[:, None]
evtfeat_ft16 /= np.linalg.norm(evtfeat_ft16, axis=1)[:, None]
##================================================================= float16
stdfeat_ft16 = stdfeat.astype(np.float16)
evtfeat_ft16 = evtfeat.astype(np.float16)
stdfeat_ft16 /= np.linalg.norm(stdfeat_ft16, axis=1)[:, None]
evtfeat_ft16 /= np.linalg.norm(evtfeat_ft16, axis=1)[:, None]
matrix_ft16 = 1 - cdist(stdfeat_ft16, evtfeat_ft16, 'cosine')
simi_mean_ft16 = np.mean(matrix_ft16)
simi_max_ft16 = np.max(matrix_ft16)
stdfeatm_ft16 = np.mean(stdfeat_ft16, axis=0, keepdims=True)
evtfeatm_ft16 = np.mean(evtfeat_ft16, axis=0, keepdims=True)
simi_mfeat_ft16 = 1- np.maximum(0.0, cdist(stdfeatm_ft16, evtfeatm_ft16, 'cosine'))
rltdata_ft16.append((label, stdbcd, evt, simi_mean_ft16, simi_max_ft16, simi_mfeat_ft16[0,0]))
matrix_ft16 = 1 - cdist(stdfeat_ft16, evtfeat_ft16, 'cosine')
simi_mean_ft16 = np.mean(matrix_ft16)
simi_max_ft16 = np.max(matrix_ft16)
stdfeatm_ft16 = np.mean(stdfeat_ft16, axis=0, keepdims=True)
evtfeatm_ft16 = np.mean(evtfeat_ft16, axis=0, keepdims=True)
simi_mfeat_ft16 = 1- np.maximum(0.0, cdist(stdfeatm_ft16, evtfeatm_ft16, 'cosine'))
rltdata_ft16 = [label, stdbcd, evt, simi_mean_ft16, simi_max_ft16, simi_mfeat_ft16[0,0]]
'''****************** uint8 is ok!!!!!! ******************'''
##============================================ uint8
# stdfeat_uint8, stdfeat_ft16_ = ft16_to_uint8(stdfeat_ft16)
# evtfeat_uint8, evtfeat_ft16_ = ft16_to_uint8(evtfeat_ft16)
'''****************** uint8 is ok!!!!!! ******************'''
##=================================================================== uint8
# stdfeat_uint8, stdfeat_ft16_ = ft16_to_uint8(stdfeat_ft16)
# evtfeat_uint8, evtfeat_ft16_ = ft16_to_uint8(evtfeat_ft16)
stdfeat_uint8 = (stdfeat_ft16*128).astype(np.int8)
evtfeat_uint8 = (evtfeat_ft16*128).astype(np.int8)
stdfeat_ft16_ = stdfeat_uint8.astype(np.float16)/128
evtfeat_ft16_ = evtfeat_uint8.astype(np.float16)/128
stdfeat_uint8 = (stdfeat_ft16*128).astype(np.int8)
evtfeat_uint8 = (evtfeat_ft16*128).astype(np.int8)
stdfeat_ft16_ = stdfeat_uint8.astype(np.float16)/128
evtfeat_ft16_ = evtfeat_uint8.astype(np.float16)/128
absdiff = np.linalg.norm(stdfeat_ft16_ - stdfeat) / stdfeat.size
matrix_ft16_ = 1 - cdist(stdfeat_ft16_, evtfeat_ft16_, 'cosine')
simi_mean_ft16_ = np.mean(matrix_ft16_)
simi_max_ft16_ = np.max(matrix_ft16_)
stdfeatm_ft16_ = np.mean(stdfeat_ft16_, axis=0, keepdims=True)
evtfeatm_ft16_ = np.mean(evtfeat_ft16_, axis=0, keepdims=True)
simi_mfeat_ft16_ = 1- np.maximum(0.0, cdist(stdfeatm_ft16_, evtfeatm_ft16_, 'cosine'))
rltdata_ft16_ = [label, stdbcd, evt, simi_mean_ft16_, simi_max_ft16_, simi_mfeat_ft16_[0,0]]
if not save:
return
absdiff = np.linalg.norm(stdfeat_ft16_ - stdfeat) / stdfeat.size
matrix_ft16_ = 1 - cdist(stdfeat_ft16_, evtfeat_ft16_, 'cosine')
simi_mean_ft16_ = np.mean(matrix_ft16_)
simi_max_ft16_ = np.max(matrix_ft16_)
stdfeatm_ft16_ = np.mean(stdfeat_ft16_, axis=0, keepdims=True)
evtfeatm_ft16_ = np.mean(evtfeat_ft16_, axis=0, keepdims=True)
simi_mfeat_ft16_ = 1- np.maximum(0.0, cdist(stdfeatm_ft16_, evtfeatm_ft16_, 'cosine'))
rltdata_ft16_.append((label, stdbcd, evt, simi_mean_ft16_, simi_max_ft16_, simi_mfeat_ft16_[0,0]))
tm = datetime.fromtimestamp(time.time()).strftime('%Y%m%d_%H%M%S')
##================================================ save as float32,
rppath = os.path.join(resultPath, f'{tm}.pickle')
##========================================================= save as float32
rppath = os.path.join(similPath, f'{evt}_ft32.pickle')
with open(rppath, 'wb') as f:
pickle.dump(rltdata, f)
rtpath = os.path.join(resultPath, f'{tm}.txt')
rtpath = os.path.join(similPath, f'{evt}_ft32.txt')
with open(rtpath, 'w', encoding='utf-8') as f:
for result in rltdata:
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
@ -385,12 +372,12 @@ def one2one_eval(resultPath):
f.write(line + '\n')
##================================================ save as float16,
rppath_ft16 = os.path.join(resultPath, f'{tm}_ft16.pickle')
##========================================================= save as float16
rppath_ft16 = os.path.join(similPath, f'{evt}_ft16.pickle')
with open(rppath_ft16, 'wb') as f:
pickle.dump(rltdata_ft16, f)
rtpath_ft16 = os.path.join(resultPath, f'{tm}_ft16.txt')
rtpath_ft16 = os.path.join(similPath, f'{evt}_ft16.txt')
with open(rtpath_ft16, 'w', encoding='utf-8') as f:
for result in rltdata_ft16:
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
@ -398,12 +385,12 @@ def one2one_eval(resultPath):
f.write(line + '\n')
##================================================ save as uint8,
rppath_uint8 = os.path.join(resultPath, f'{tm}_uint8.pickle')
##=========================================================== save as uint8
rppath_uint8 = os.path.join(similPath, f'{evt}_uint8.pickle')
with open(rppath_uint8, 'wb') as f:
pickle.dump(rltdata_ft16_, f)
rtpath_uint8 = os.path.join(resultPath, f'{tm}_uint8.txt')
rtpath_uint8 = os.path.join(similPath, f'{evt}_uint8.txt')
with open(rtpath_uint8, 'w', encoding='utf-8') as f:
for result in rltdata_ft16_:
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
@ -411,29 +398,132 @@ def one2one_eval(resultPath):
f.write(line + '\n')
def one2one_simi():
'''
stdFeaturePath: 标准特征集地址
eventDataPath: Event对象地址
'''
stdBarcode = [p.stem for p in Path(stdFeaturePath).iterdir() if p.is_file() and p.suffix=='.pickle']
'''======1. 购物事件列表,该列表中的 Barcode 存在于标准的 stdBarcode 内 ==='''
evtList = [(p.stem, p.stem.split('_')[-1]) for p in Path(eventDataPath).iterdir()
if p.is_file()
and p.suffix=='.pickle'
and (len(p.stem.split('_'))==2 or len(p.stem.split('_'))==3)
and p.stem.split('_')[-1].isdigit()
and p.stem.split('_')[-1] in stdBarcode
]
barcodes = set([bcd for _, bcd in evtList])
'''======2. 构建用于比对的标准特征字典 ============='''
stdDict = {}
for barcode in barcodes:
stdpath = os.path.join(stdFeaturePath, barcode+'.pickle')
with open(stdpath, 'rb') as f:
stddata = pickle.load(f)
stdDict[barcode] = stddata
'''======3. 构建用于比对的操作事件字典 ============='''
evtDict = {}
for evtname, barcode in evtList:
evtpath = os.path.join(eventDataPath, evtname+'.pickle')
with open(evtpath, 'rb') as f:
evtdata = pickle.load(f)
evtDict[evtname] = evtdata
'''======4.1 事件轨迹子图保存 ======================'''
error_event = []
for evtname, event in evtDict.items():
pairpath = os.path.join(subimgPath, f"{evtname}")
if not os.path.exists(pairpath):
os.makedirs(pairpath)
try:
save_event_subimg(event, pairpath)
except Exception as e:
error_event.append(evtname)
img_path = os.path.join(imagePath, f"{evtname}")
if not os.path.exists(img_path):
os.makedirs(img_path)
try:
plot_save_image(event, img_path)
except Exception as e:
error_event.append(evtname)
errfile = os.path.join(subimgPath, f'error_event.txt')
with open(errfile, 'w', encoding='utf-8') as f:
for line in error_event:
f.write(line + '\n')
'''======4.2 barcode 标准图像保存 =================='''
# for stdbcd in barcodes:
# stdImgpath = stdDict[stdbcd]["imgpaths"]
# pstdpath = os.path.join(subimgPath, f"{stdbcd}")
# if not os.path.exists(pstdpath):
# os.makedirs(pstdpath)
# ii = 1
# for filepath in stdImgpath:
# stdpath = os.path.join(pstdpath, f"{stdbcd}_{ii}.png")
# shutil.copy2(filepath, stdpath)
# ii += 1
'''======5 构造 3 个事件对: 扫 A 放 A, 扫 A 放 B, 合并 ===================='''
AA_list = [(evtname, barcode, "same") for evtname, barcode in evtList]
AB_list = []
for evtname, barcode in evtList:
dset = list(barcodes.symmetric_difference(set([barcode])))
if len(dset):
idx = random.randint(0, len(dset)-1)
AB_list.append((evtname, dset[idx], "diff"))
mergePairs = AA_list + AB_list
'''======6 计算事件、标准特征集相似度 =================='''
rltdata = []
for i in range(len(mergePairs)):
evtname, stdbcd, label = mergePairs[i]
event = evtDict[evtname]
##============================================ float32
stdfeat = stdDict[stdbcd]["feats_ft32"]
evtfeat = event.feats_compose
if len(evtfeat)==0: continue
matrix = 1 - cdist(stdfeat, evtfeat, 'cosine')
matrix[matrix < 0] = 0
simi_mean = np.mean(matrix)
simi_max = np.max(matrix)
stdfeatm = np.mean(stdfeat, axis=0, keepdims=True)
evtfeatm = np.mean(evtfeat, axis=0, keepdims=True)
simi_mfeat = 1- np.maximum(0.0, cdist(stdfeatm, evtfeatm, 'cosine'))
rltdata.append((label, stdbcd, evtname, simi_mean, simi_max, simi_mfeat[0,0]))
'''================ float32、16、int8 精度比较与存储 ============='''
# data_precision_compare(stdfeat, evtfeat, mergePairs[i], save=True)
print("func: one2one_eval(), have finished!")
return rltdata
def compute_precise_recall(pickpath):
pickfile = os.path.basename(pickpath)
file, ext = os.path.splitext(pickfile)
if ext != '.pickle': return
if file.find('ft16') < 0: return
with open(pickpath, 'rb') as f:
results = pickle.load(f)
def compute_precise_recall(rltdata):
Same, Cross = [], []
for label, stdbcd, evt, simi_mean, simi_max, simi_mft in results:
for label, stdbcd, evtname, simi_mean, simi_max, simi_mft in rltdata:
if label == "same":
Same.append(simi_mean)
if label == "diff":
Cross.append(simi_mean)
Same = np.array(Same)
Cross = np.array(Cross)
TPFN = len(Same)
@ -480,115 +570,135 @@ def compute_precise_recall(pickpath):
ax.set_xlabel(f"Same Num: {TPFN}, Cross Num: {TNFP}")
ax.legend()
plt.show()
plt.savefig(f'./result/{file}_pr.png') # svg, png, pdf
rltpath = os.path.join(similPath, 'pr.png')
plt.savefig(rltpath) # svg, png, pdf
def gen_eventdict(eventDatePath, saveimg=True):
def gen_eventdict(sourcePath, saveimg=True):
eventList = []
# k = 0
for datePath in eventDatePath:
for eventName in os.listdir(datePath):
errEvents = []
k = 0
for source_path in sourcePath:
bname = os.path.basename(source_path)
pickpath = os.path.join(eventFeatPath, f"{eventName}.pickle")
if os.path.isfile(pickpath):
continue
eventPath = os.path.join(datePath, eventName)
pickpath = os.path.join(eventDataPath, f"{bname}.pickle")
if os.path.isfile(pickpath): continue
eventDict = creat_shopping_event(eventPath)
if eventDict:
eventList.append(eventDict)
with open(pickpath, 'wb') as f:
pickle.dump(eventDict, f)
print(f"Event: {eventName}, have saved!")
# if bname != "20241129-100321-a9dae9e3-7db5-4e31-959c-d7dfc228923e_6972636670213":
# continue
# k += 1
# if k==1:
# break
## 保存轨迹中 boxes 子图
if not saveimg:
return
for event in eventList:
basename = os.path.basename(event['filepath'])
savepath = os.path.join(subimgPath, basename)
if not os.path.exists(savepath):
os.makedirs(savepath)
save_event_subimg(event, savepath)
# eventDict = creat_shopping_event(eventPath)
# if eventDict:
# eventList.append(eventDict)
# with open(pickpath, 'wb') as f:
# pickle.dump(eventDict, f)
# print(f"Event: {eventName}, have saved!")
# if saveimg and eventDict:
# basename = os.path.basename(eventDict['filepath'])
# savepath = os.path.join(subimgPath, basename)
# if not os.path.exists(savepath):
# os.makedirs(savepath)
# save_event_subimg(eventDict, savepath)
try:
event = Event(source_path)
eventList.append(event)
with open(pickpath, 'wb') as f:
pickle.dump(event, f)
print(bname)
except Exception as e:
errEvents.append(source_path)
print(e)
# k += 1
# if k==10:
# break
errfile = os.path.join(eventDataPath, f'error_events.txt')
with open(errfile, 'w', encoding='utf-8') as f:
for line in errEvents:
f.write(line + '\n')
def test_one2one():
eventDatePath = [r'\\192.168.1.28\share\测试_202406\1101\images',
# r'\\192.168.1.28\share\测试_202406\0910\images',
# r'\\192.168.1.28\share\测试_202406\0723\0723_1',
# r'\\192.168.1.28\share\测试_202406\0723\0723_2',
# r'\\192.168.1.28\share\测试_202406\0723\0723_3',
# r'\\192.168.1.28\share\测试_202406\0722\0722_01',
# r'\\192.168.1.28\share\测试_202406\0722\0722_02'
# r'\\192.168.1.28\share\测试_202406\0719\719_3',
# r'\\192.168.1.28\share\测试_202406\0716\0716_1',
# r'\\192.168.1.28\share\测试_202406\0716\0716_2',
# r'\\192.168.1.28\share\测试_202406\0716\0716_3',
# r'\\192.168.1.28\share\测试_202406\0712\0712_1', # 无帧图像
# r'\\192.168.1.28\share\测试_202406\0712\0712_2', # 无帧图像
]
bcdList = []
for evtpath in eventDatePath:
bcdList, event_spath = [], []
for evtpath in eventSourcePath:
for evtname in os.listdir(evtpath):
evt = evtname.split('_')
dirpath = os.path.join(evtpath, evtname)
if os.path.isfile(dirpath): continue
if len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10:
bcdList.append(evt[-1])
event_spath.append(os.path.join(evtpath, evtname))
bcdSet = set(bcdList)
model = model_init(conf)
'''==== 1. 生成标准特征集, 只需运行一次 ==============='''
genfeatures(model, stdSamplePath, stdBarcodePath, stdFeaturePath, bcdSet)
'''==== 1. 生成标准特征集, 只需运行一次, 在 genfeats.py 中实现 ==========='''
# gen_bcd_features(stdSamplePath, stdBarcodePath, stdFeaturePath, bcdSet)
print("stdFeats have generated and saved!")
'''==== 2. 生成事件字典, 只需运行一次 ==============='''
gen_eventdict(eventDatePath)
gen_eventdict(event_spath)
print("eventList have generated and saved!")
'''==== 3. 1:1性能评估 ==============='''
one2one_eval(resultPath)
for filename in os.listdir(resultPath):
if filename.find('.pickle') < 0: continue
if filename.find('0911') < 0: continue
pickpath = os.path.join(resultPath, filename)
compute_precise_recall(pickpath)
rltdata = one2one_simi()
compute_precise_recall(rltdata)
if __name__ == '__main__':
'''
6个地址:
7个地址:
(1) stdSamplePath: 用于生成比对标准特征集的原始图像地址
(2) stdBarcodePath: 比对标准特征集原始图像地址的pickle文件存储{barcode: [imgpath1, imgpath1, ...]}
(3) stdFeaturePath: 比对标准特征集特征存储地址
(4) eventFeatPath: 用于1:1比对的购物事件特征存储地址、对应子图存储地址
(5) subimgPath: 1:1比对购物事件轨迹、标准barcode所对应的 subimgs 存储地址
(6) resultPath: 1:1比对结果存储地址
(4) eventSourcePath: 事件地址
(5) resultPath: 结果存储地址
(6) eventDataPath: 用于1:1比对的购物事件特征存储地址、对应子图存储地址
(7) subimgPath: 1:1比对购物事件轨迹、标准barcode所对应的 subimgs 存储地址
(8) similPath: 1:1比对结果存储地址(事件级)
'''
# stdSamplePath = r"\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_500_1979_已清洗"
# stdBarcodePath = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes_2192"
# stdFeaturePath = r"\\192.168.1.28\share\测试_202406\contrast\std_features_ft32"
# eventDataPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
# subimgPath = r'\\192.168.1.28\share\测试_202406\contrast\subimgs'
# similPath = r"D:\DetectTracking\contrast\result\pickle"
# eventSourcePath = [r'\\192.168.1.28\share\测试_202406\1101\images']
stdSamplePath = r"\\192.168.1.28\share\已标注数据备份\比数据\barcode\barcode_500_1979_已清洗"
stdBarcodePath = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes_2192"
stdFeaturePath = r"\\192.168.1.28\share\测试_202406\contrast\std_features_ft32"
eventFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
subimgPath = r'\\192.168.1.28\share\测试_202406\contrast\subimgs'
resultPath = r"D:\DetectTracking\contrast\result\pickle"
if not os.path.exists(resultPath):
os.makedirs(resultPath)
stdSamplePath = r"\\192.168.1.28\share\数据\已完成数据\展厅数据\v1.0\数据\整理\zhantingBase"
stdBarcodePath = r"D:\exhibition\dataset\bcdpath"
stdFeaturePath = r"D:\exhibition\dataset\feats"
resultPath = r"D:\exhibition\result\events"
# eventSourcePath = [r'D:\exhibition\images\20241202']
# eventSourcePath = [r"\\192.168.1.28\share\测试视频数据以及日志\各模块测试记录\展厅测试\1129_展厅模型v801测试组测试"]
eventSourcePath = [r"\\192.168.1.28\share\测试视频数据以及日志\各模块测试记录\展厅测试\1126_展厅模型v801测试"]
'''定义当前事件存储地址及生成相应文件件'''
eventDataPath = os.path.join(resultPath, "1126", "evtobjs")
subimgPath = os.path.join(resultPath, "1126", "subimgs")
imagePath = os.path.join(resultPath, "1126", "image")
similPath = os.path.join(resultPath, "1126", "simidata")
if not os.path.exists(eventDataPath):
os.makedirs(eventDataPath)
if not os.path.exists(subimgPath):
os.makedirs(subimgPath)
if not os.path.exists(imagePath):
os.makedirs(imagePath)
if not os.path.exists(similPath):
os.makedirs(similPath)
test_one2one()

View File

@ -106,7 +106,9 @@ def test_compare():
def one2one_pr(paths):
paths = Path(paths)
evtpaths = [p for p in paths.iterdir() if p.is_dir() and len(p.name.split('_'))>=2]
# evtpaths = [p for p in paths.iterdir() if p.is_dir() and len(p.name.split('_'))>=2]
evtpaths = [p for p in paths.iterdir() if p.is_dir()]
events, similars = [], []
@ -120,7 +122,10 @@ def one2one_pr(paths):
##===================================== 应用于1:n
tpevents, fnevents, fpevents, tnevents = [], [], [], []
tpsimi, fnsimi, tnsimi, fpsimi = [], [], [], []
other_event, other_simi = [], []
##===================================== barcodes总数、比对错误事件
bcdList, one2onePath = [], []
for path in evtpaths:
barcode = path.stem.split('_')[-1]
datapath = path.joinpath('process.data')
@ -128,6 +133,8 @@ def one2one_pr(paths):
if not barcode.isdigit() or len(barcode)<10: continue
if not datapath.is_file(): continue
bcdList.append(barcode)
try:
SimiDict = read_similar(datapath)
except Exception as e:
@ -150,13 +157,17 @@ def one2one_pr(paths):
one2oneAA.extend(simAA)
one2oneAB.extend(simAB)
one2onePath.append(path.stem)
##===================================== 以下应用适用于展厅 1N
max_idx = similars.index(max(similars))
max_sim = similars[max_idx]
# max_bcd = barcodes[max_idx]
if path.stem.find('100321')>0:
print("hhh")
for i in range(len(one2one)):
bcd, simi = barcodes[i], similars[i]
if bcd==barcode and simi==max_sim:
@ -197,9 +208,13 @@ def one2one_pr(paths):
elif bcd!=barcode and simi!=maxsim:
tnsimi.append(simi)
tnevents.append(path.stem)
else:
elif bcd!=barcode and simi==maxsim:
fpsimi.append(simi)
fpevents.append(path.stem)
else:
other_simi.append(simi)
other_event.append(path.stem)
'''命名规则:
1:1 1:n 1:N
@ -228,9 +243,12 @@ def one2one_pr(paths):
FN_ = sum(np.array(one2oneAA) < th)
TN_ = sum(np.array(one2oneAB) < th)
PPrecise_.append(TP_/(TP_+FP_+1e-6))
PRecall_.append(TP_/(TP_+FN_+1e-6))
# PRecall_.append(TP_/(TP_+FN_+1e-6))
PRecall_.append(TP_/(len(one2oneAA)+1e-6))
NPrecise_.append(TN_/(TN_+FN_+1e-6))
NRecall_.append(TN_/(TN_+FP_+1e-6))
# NRecall_.append(TN_/(TN_+FP_+1e-6))
NRecall_.append(TN_/(len(one2oneAB)+1e-6))
'''============================= 1:n'''
TP = sum(np.array(tpsimi) >= th)
@ -238,9 +256,12 @@ def one2one_pr(paths):
FN = sum(np.array(fnsimi) < th)
TN = sum(np.array(tnsimi) < th)
PPrecise.append(TP/(TP+FP+1e-6))
PRecall.append(TP/(TP+FN+1e-6))
# PRecall.append(TP/(TP+FN+1e-6))
PRecall.append(TP/(len(tpsimi)+len(fnsimi)+1e-6))
NPrecise.append(TN/(TN+FN+1e-6))
NRecall.append(TN/(TN+FP+1e-6))
# NRecall.append(TN/(TN+FP+1e-6))
NRecall.append(TN/(len(tnsimi)+len(fpsimi)+1e-6))
'''============================= 1:N 展厅'''
@ -249,9 +270,12 @@ def one2one_pr(paths):
FNX = sum(np.array(fn_simi) < th)
TNX = sum(np.array(tn_simi) < th)
PPreciseX.append(TPX/(TPX+FPX+1e-6))
PRecallX.append(TPX/(TPX+FNX+1e-6))
# PRecallX.append(TPX/(TPX+FNX+1e-6))
PRecallX.append(TPX/(len(tp_simi)+len(fn_simi)+1e-6))
NPreciseX.append(TNX/(TNX+FNX+1e-6))
NRecallX.append(TNX/(TNX+FPX+1e-6))
# NRecallX.append(TNX/(TNX+FPX+1e-6))
NRecallX.append(TNX/(len(tn_simi)+len(fp_simi)+1e-6))
'''============================= 1:1 曲线'''
fig, ax = plt.subplots()
@ -262,8 +286,8 @@ def one2one_pr(paths):
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.grid(True)
ax.set_title('Precise & Recall')
ax.set_xlabel(f"Num: {len(evtpaths)}")
ax.set_title('1:1 Precise & Recall')
ax.set_xlabel(f"Event Num: {len(one2oneAA)}")
ax.legend()
plt.show()
@ -286,8 +310,8 @@ def one2one_pr(paths):
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.grid(True)
ax.set_title('Precise & Recall')
ax.set_xlabel(f"Num: {len(evtpaths)}")
ax.set_title('1:n Precise & Recall')
ax.set_xlabel(f"Event Num: {len(one2oneAA)}")
ax.legend()
plt.show()
@ -317,8 +341,8 @@ def one2one_pr(paths):
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.grid(True)
ax.set_title('Precise & Recall')
ax.set_xlabel(f"Num: {len(evtpaths)}")
ax.set_title('1:N Precise & Recall')
ax.set_xlabel(f"Event Num: {len(one2oneAA)}")
ax.legend()
plt.show()
@ -338,16 +362,23 @@ def one2one_pr(paths):
axes[1, 1].set_title('FN')
plt.show()
# bcdSet = set(bcdList)
# one2nErrFile = str(paths.joinpath("one_2_Small_n_Error.txt"))
# with open(one2nErrFile, "w") as file:
# for item in fnevents:
# file.write(item + "\n")
# one2NErrFile = str(paths.joinpath("one_2_Big_N_Error.txt"))
# with open(one2NErrFile, "w") as file:
# for item in fn_events:
# file.write(item + "\n")
print('Done!')
if __name__ == "__main__":
evtpaths = r"\\192.168.1.28\share\测试视频数据以及日志\各模块测试记录\展厅测试\1120_展厅模型v801测试\扫A放A"
evtpaths = r"\\192.168.1.28\share\测试视频数据以及日志\各模块测试记录\展厅测试\1129_展厅模型v801测试组测试"
one2one_pr(evtpaths)

Binary file not shown.

179
contrast/utils/event.py Normal file
View File

@ -0,0 +1,179 @@
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 26 17:35:05 2024
@author: ym
"""
import os
import numpy as np
from pathlib import Path
import sys
sys.path.append(r"D:\DetectTracking")
from tracking.utils.read_data import extract_data, read_tracking_output, read_similar
IMG_FORMAT = ['.bmp', '.jpg', '.jpeg', '.png']
VID_FORMAT = ['.mp4', '.avi']
class Event:
def __init__(self, eventpath, stype="data"):
'''stype: str, 'video', 'image', 'data', '''
self.eventpath = eventpath
self.evtname = str(Path(eventpath).stem)
self.barcode = ''
self.evtType = ''
'''=========== path of image and video =========== '''
self.back_videopath = ''
self.front_videopath = ''
self.back_imgpaths = []
self.front_imgpaths = []
'''=========== process.data ==============================='''
self.one2one = None
self.one2n = None
'''=========== 0/1_track.data ============================='''
self.back_yolobboxes = np.empty((0, 6), dtype=np.float64)
self.back_yolofeats = np.empty((0, 256), dtype=np.float64)
self.back_trackerboxes = np.empty((0, 9), dtype=np.float64)
self.back_trackerfeats = np.empty((0, 256), dtype=np.float64)
self.back_trackingboxes = np.empty((0, 9), dtype=np.float64)
self.back_trackingfeats = np.empty((0, 256), dtype=np.float64)
self.front_yolobboxes = np.empty((0, 6), dtype=np.float64)
self.front_yolofeats = np.empty((0, 256), dtype=np.float64)
self.front_trackerboxes = np.empty((0, 9), dtype=np.float64)
self.front_trackerfeats = np.empty((0, 256), dtype=np.float64)
self.front_trackingboxes = np.empty((0, 9), dtype=np.float64)
self.front_trackingfeats = np.empty((0, 256), dtype=np.float64)
'''=========== 0/1_tracking_output.data ==================='''
self.back_boxes = np.empty((0, 9), dtype=np.float64)
self.front_boxes = np.empty((0, 9), dtype=np.float64)
self.back_feats = np.empty((0, 256), dtype=np.float64)
self.front_feats = np.empty((0, 256), dtype=np.float64)
self.feats_compose = np.empty((0, 256), dtype=np.float64)
self.feats_select = np.empty((0, 256), dtype=np.float64)
if stype=="data":
self.from_datafile(eventpath)
if stype=="video":
self.from_video(eventpath)
if stype=="image":
self.from_image(eventpath)
def from_datafile(self, eventpath):
evtList = self.evtname.split('_')
if len(evtList)>=2 and len(evtList[-1])>=10 and evtList[-1].isdigit():
self.barcode = evtList[-1]
if len(evtList)==3 and evtList[-1]== evtList[-2]:
self.evtType = 'input'
else:
self.evtType = 'other'
'''================ path of image ============='''
frontImgs, frontFid = [], []
backImgs, backFid = [], []
for imgname in os.listdir(eventpath):
name, ext = os.path.splitext(imgname)
if ext not in IMG_FORMAT or name.find('frameId') < 0: continue
if len(name.split('_')) != 3 and not name.split('_')[3].isdigit(): continue
CamerType = name.split('_')[0]
frameId = int(name.split('_')[3])
imgpath = os.path.join(eventpath, imgname)
if CamerType == '0':
backImgs.append(imgpath)
backFid.append(frameId)
if CamerType == '1':
frontImgs.append(imgpath)
frontFid.append(frameId)
## 生成依据帧 ID 排序的前后摄图像地址列表
frontIdx = np.argsort(np.array(frontFid))
backIdx = np.argsort(np.array(backFid))
self.front_imgpaths = [frontImgs[i] for i in frontIdx]
self.back_imgpaths = [backImgs[i] for i in backIdx]
'''================ path of video ============='''
for vidname in os.listdir(eventpath):
name, ext = os.path.splitext(vidname)
if ext not in VID_FORMAT: continue
vidpath = os.path.join(eventpath, vidname)
CamerType = name.split('_')[0]
if CamerType == '0':
self.back_videopath = vidpath
if CamerType == '1':
self.front_videopath = vidpath
'''================ process.data ============='''
procpath = Path(eventpath).joinpath('process.data')
if procpath.is_file():
SimiDict = read_similar(procpath)
self.one2one = SimiDict['one2one']
self.one2n = SimiDict['one2n']
'''=========== 0/1_track.data & 0/1_tracking_output.data ======='''
for dataname in os.listdir(eventpath):
datapath = os.path.join(eventpath, dataname)
if not os.path.isfile(datapath): continue
CamerType = dataname.split('_')[0]
'''========== 0/1_track.data =========='''
if dataname.find("_track.data")>0:
bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(datapath)
if CamerType == '0':
self.back_yolobboxes = bboxes
self.back_yolofeats = ffeats
self.back_trackerboxes = trackerboxes
self.back_trackerfeats = tracker_feat_dict
self.back_trackingboxes = trackingboxes
self.back_trackingfeats = tracking_feat_dict
if CamerType == '1':
self.front_yolobboxes = bboxes
self.front_yolofeats = ffeats
self.front_trackerboxes = trackerboxes
self.front_trackerfeats = tracker_feat_dict
self.front_trackingboxes = trackingboxes
self.front_trackingfeats = tracking_feat_dict
'''========== 0/1_tracking_output.data =========='''
if dataname.find("_tracking_output.data")>0:
tracking_output_boxes, tracking_output_feats = read_tracking_output(datapath)
if CamerType == '0':
self.back_boxes = tracking_output_boxes
self.back_feats = tracking_output_feats
elif CamerType == '1':
self.front_boxes = tracking_output_boxes
self.front_feats = tracking_output_feats
self.select_feat()
self.compose_feats()
def compose_feats(self):
'''事件的特征集成'''
feats_compose = np.empty((0, 256), dtype=np.float64)
if len(self.front_feats):
feats_compose = np.concatenate((feats_compose, self.front_feats), axis=0)
if len(self.back_feats):
feats_compose = np.concatenate((feats_compose, self.back_feats), axis=0)
self.feats_compose = feats_compose
def select_feats(self):
'''事件的特征选择'''
if len(self.front_feats):
self.feats_select = self.front_feats
else:
self.feats_select = self.back_feats

View File

@ -5,11 +5,19 @@ Created on Sun Sep 29 08:59:21 2024
@author: ym
"""
import os
import sys
import cv2
import pickle
import argparse
import numpy as np
from pathlib import Path
from track_reid import parse_opt, yolo_resnet_tracker
from track_reid import parse_opt
from track_reid import yolo_resnet_tracker
# FILE = Path(__file__).resolve()
# ROOT = FILE.parents[0] # YOLOv5 root directory
# if str(ROOT) not in sys.path:
# sys.path.append(str(ROOT)) # add ROOT to PATH
# ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from tracking.dotrack.dotracks_back import doBackTracks
from tracking.dotrack.dotracks_front import doFrontTracks
@ -35,38 +43,27 @@ def get_interbcd_inputenents():
return input_enents
def pipeline(eventpath, stdfeat_path=None, SourceType = "image"):
'''
inputs:
eventpath: 事件文件夹
stdfeat_path: 标准特征文件地址
outputs:
'''
# SourceType = "image" # image
# eventpath = r"\\192.168.1.28\share\测试_202406\0918\images1\20240918-110822-1bc3902e-5a8e-4e23-8eca-fb3f02738551_6938314601726"
savepath = r"D:\contrast\detect"
opt = parse_opt()
optdict = vars(opt)
optdict["project"] = savepath
eventname = os.path.basename(eventpath)
# barcode = eventname.split('_')[-1]
def pipeline(
eventpath,
savepath,
SourceType = "image", # video
stdfeat_path = None
):
if SourceType == "video":
vpaths = get_video_pairs(eventpath)
elif SourceType == "image":
vpaths = get_image_pairs(eventpath)
'''======== 函数 yolo_resnet_tracker() 的参数字典 ========'''
opt = parse_opt()
optdict = vars(opt)
optdict["is_save_img"] = True
optdict["is_save_video"] = True
event_tracks = []
for vpath in vpaths:
'''事件结果文件夹'''
save_dir_event = Path(savepath) / Path(eventname)
save_dir_event = Path(savepath) / Path(os.path.basename(eventpath))
if isinstance(vpath, list):
save_dir_video = save_dir_event / Path("images")
else:
@ -78,8 +75,7 @@ def pipeline(eventpath, stdfeat_path=None, SourceType = "image"):
'''Yolo + Resnet + Tracker'''
optdict["source"] = vpath
optdict["save_dir"] = save_dir_video
optdict["is_save_img"] = True
optdict["is_save_video"] = True
tracksdict = yolo_resnet_tracker(**optdict)
@ -138,6 +134,7 @@ def pipeline(eventpath, stdfeat_path=None, SourceType = "image"):
'''前后摄轨迹选择'''
if stdfeat_path is not None:
with open(stdfeat_path, 'rb') as f:
featDict = pickle.load(f)
@ -171,21 +168,28 @@ def main_loop():
stdfeat_path = os.path.join(bcdpath, f"{bcd}.pickle")
input_enents.append((event_path, stdfeat_path))
parmDict = {}
parmDict["SourceType"] = "image"
parmDict["savepath"] = r"D:\contrast\detect"
for eventpath, stdfeat_path in input_enents:
pipeline(eventpath, stdfeat_path, SourceType)
parmDict["eventpath"] = eventpath
parmDict["stdfeat_path"] = stdfeat_path
pipeline(**parmDict)
def main():
eventpath = r"D:\datasets\ym\exhibition\175836"
'''
函数pipeline(),遍历事件文件夹,选择类型 image 或 video,
'''
parmDict = {}
parmDict["eventpath"] = r"\\192.168.1.28\share\测试视频数据以及日志\各模块测试记录\展厅测试\1120_展厅模型v801测试\扫A放A\20241121-144855-dce94b09-1100-43f1-92e8-33a1b538b159_6924743915848_6924743915848"
eventpath = r"\\192.168.1.28\share\测试视频数据以及日志\各模块测试记录\展厅测试\1120_展厅模型v801测试\扫A放A\20241121-144855-dce94b09-1100-43f1-92e8-33a1b538b159_6924743915848_6924743915848"
SourceType = 'image'
stdfeat_path = None
pipeline(eventpath, stdfeat_path, SourceType)
parmDict["savepath"] = r"D:\contrast\detect"
parmDict["SourceType"] = "image" # video, image
parmDict["stdfeat_path"] = None
pipeline(**parmDict)
if __name__ == "__main__":

View File

@ -207,11 +207,6 @@ def state_measure(periods, weights, hands, spath=None):
'''序列索引号, 相机类型,时间戳, 单摄状态1、单摄状态2、CV综合状态、综合数据类型、综合状态
0 1 2 3 4 5 6 7
'''
@ -428,8 +423,8 @@ def run_tracking(trackboxes, MotionSlice):
def show_seri():
datapath = r"\\192.168.1.28\share\realtime\eventdata\1731316835560"
savedir = r"D:\DetectTracking\realtime"
datapath = r"\\192.168.1.28\share\个人文件\wqg\realtime\eventdata\1731316835560"
savedir = r"D:\DetectTracking\realtime\1"
imgdir = datapath.split('\\')[-2] + "_" + datapath.split('\\')[-1]
@ -475,7 +470,7 @@ def show_seri():
def main():
runyolo()
# runyolo()
show_seri()

View File

@ -64,6 +64,9 @@ from contrast.feat_extract.config import config as conf
from contrast.feat_extract.inference import FeatsInterface
ReIDEncoder = FeatsInterface(conf)
IMG_FORMATS = '.bmp', '.dng', '.jpeg', '.jpg', '.mpo', '.png', '.tif', '.tiff', '.webp', '.pfm' # include image suffixes
VID_FORMATS = '.asf', '.avi', '.gif', '.m4v', '.mkv', '.mov', '.mp4', '.mpeg', '.mpg', '.ts', '.wmv' # include video suffixes
# from tracking.trackers.reid.reid_interface import ReIDInterface
# from tracking.trackers.reid.config import config as ReIDConfig
# ReIDEncoder = ReIDInterface(ReIDConfig)
@ -141,6 +144,9 @@ def yolo_resnet_tracker(
name='exp', # save results to project/name
save_dir = '',
is_save_img = False,
is_save_video = True,
tracker_yaml = "./tracking/trackers/cfg/botsort.yaml",
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
@ -153,18 +159,15 @@ def yolo_resnet_tracker(
save_csv=False, # save results in CSV format
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
is_save_img = False,
is_save_video = True,
update=False, # update all models
exist_ok=False, # existing project/name ok, do not increment
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidencesL
@ -180,6 +183,8 @@ def yolo_resnet_tracker(
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
bs = 1 # batch_size
@ -203,8 +208,8 @@ def yolo_resnet_tracker(
# Inference
with dt[1]:
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
visualize = increment_path(project / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=False)
# NMS
with dt[2]:
@ -273,19 +278,27 @@ def yolo_resnet_tracker(
annotator.box_label(xyxy, label, color=color)
'''====== Save results (image and video) ======'''
save_path = str(save_dir / Path(path).name) # 带有后缀名
# save_path = str(save_dir / Path(path).name) # 带有后缀名
im0 = annotator.result()
if is_save_img:
save_path_img, ext = os.path.splitext(save_path)
save_path_img = str(save_dir / Path(path).stem)
if dataset.mode == 'image':
imgpath = save_path_img + ".png"
else:
imgpath = save_path_img + f"_{frameId}.png"
cv2.imwrite(Path(imgpath), im0)
if dataset.mode == 'video' and is_save_video:
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
# if dataset.mode == 'video' and is_save_video:
if is_save_video:
if dataset.mode == 'video':
vdieo_path = str(save_dir / Path(path).stem) + '.mp4' # 带有后缀名
else:
videoname = str(Path(path).stem).split('_')[0] + '.mp4'
vdieo_path = str(save_dir / videoname)
if vid_path[i] != vdieo_path: # new video
vid_path[i] = vdieo_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
@ -293,9 +306,9 @@ def yolo_resnet_tracker(
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
fps, w, h = 25, im0.shape[1], im0.shape[0]
vdieo_path = str(Path(vdieo_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(vdieo_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
# Print time (inference-only)
@ -344,6 +357,9 @@ def run(
vid_stride=1, # video frame-rate stride
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
):
'''
source: 视频文件或图像列表
'''
source = str(source)
# filename = os.path.split(source)[-1]
@ -356,6 +372,9 @@ def run(
source = check_file(source) # download
# spth = source.split('\\')[-2] + "_" + Path(source).stem
save_dir = Path(project) / Path(source.split('\\')[-2] + "_" + str(Path(source).stem))
# save_dir = Path(project) / Path(source).stem
@ -440,8 +459,7 @@ def run(
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
s += '%gx%g ' % im.shape[2:] # print string
# im0_ant = im0.copy()
@ -552,28 +570,33 @@ def run(
# Save results (image and video with tracking)
im0 = annotator.result()
save_path_img, ext = os.path.splitext(save_path)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
if save_img:
save_path_img, ext = os.path.splitext(save_path)
if dataset.mode == 'image':
imgpath = save_path_img + f"_{dataset}.png"
imgpath = save_path_img + ".png"
else:
imgpath = save_path_img + f"_{frameId}.png"
cv2.imwrite(Path(imgpath), im0)
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
if dataset.mode == 'video':
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
@ -672,40 +695,25 @@ def parse_opt():
print_args(vars(opt))
return opt
def find_files_in_nested_dirs(root_dir):
def find_video_imgs(root_dir):
all_files = []
extensions = ['.mp4']
for dirpath, dirnames, filenames in os.walk(root_dir):
for filename in filenames:
file, ext = os.path.splitext(filename)
if ext in extensions:
if ext in IMG_FORMATS + VID_FORMATS:
all_files.append(os.path.join(dirpath, filename))
return all_files
print('=======')
def main(opt):
def main():
'''
run(): 单张图像或单个视频文件的推理,不支持图像序列,
'''
check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
optdict = vars(opt)
p = r"D:\datasets\ym"
p = r"D:\exhibition\images\153112511_0_seek_105.mp4"
optdict["project"] = r"D:\exhibition\result"
files = []
if os.path.isdir(p):
files.extend(sorted(glob.glob(os.path.join(p, '*.*'))))
optdict["source"] = files
elif os.path.isfile(p):
optdict["source"] = p
run(**optdict)
def main_loop(opt):
check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
opt = parse_opt()
optdict = vars(opt)
# p = r"D:\datasets\ym\永辉测试数据_比对"
@ -714,28 +722,22 @@ def main_loop(opt):
# p = r"D:\datasets\ym\实验室测试"
# p = r"D:\datasets\ym\永辉双摄视频\新建文件夹"
# p = r"\\192.168.1.28\share\测试_202406\0723\0723_2\20240723-112522_"
p = r"D:\datasets\ym\联华中环"
# p = r"D:\datasets\ym\联华中环"
p = r"D:\exhibition\images\153112511_0_seek_105.mp4"
# p = r"D:\exhibition\images\image"
k = 0
optdict["project"] = r"D:\exhibition\result"
if os.path.isdir(p):
files = find_files_in_nested_dirs(p)
# files = [r"D:\datasets\ym\广告板遮挡测试\8\6926636301004_20240508-175300_back_addGood_70f754088050_215_17327712807.mp4",
# r"D:\datasets\ym\videos\标记视频\test_20240402-173935_6920152400975_back_174037372.mp4",
# r"D:\datasets\ym\videos\标记视频\test_20240402-173935_6920152400975_front_174037379.mp4",
# r"D:\datasets\ym\广告板遮挡测试\8\2500441577966_20240508-175946_front_addGood_70f75407b7ae_155_17788571404.mp4"
# ]
# files = [r"\\192.168.1.28\share\测试_202406\0723\0723_2\20240723-095838_\1_seek_193.mp4"]
files = find_video_imgs(p)
k = 0
for file in files:
optdict["source"] = file
run(**optdict)
# k += 1
# if k == 10:
# break
k += 1
if k == 1:
break
elif os.path.isfile(p):
optdict["source"] = p
run(**optdict)
@ -744,10 +746,8 @@ def main_loop(opt):
if __name__ == '__main__':
opt = parse_opt()
main(opt)
# main_loop(opt)
main()

View File

@ -35,9 +35,6 @@ def find_samebox_in_array(arr, target):
def extract_data(datapath):
'''
0/1_track.data 数据读取
@ -71,7 +68,7 @@ def extract_data(datapath):
boxes, feats, tboxes, tfeats = [], [], [], []
if line.find("box:") >= 0 and line.find("output_box:") < 0:
if line.find("box:") >= 0 and line.find("output_box:")<0 and line.find("out_boxes")<0:
box = line[line.find("box:") + 4:].strip()
# if len(box)==6:
boxes.append(str_to_float_arr(box))
@ -122,7 +119,9 @@ def extract_data(datapath):
for line in lines:
line = line.strip() # 去除行尾的换行符和可能的空白字符
if not line: # 跳过空行
tracking_flag = False
continue
if tracking_flag:
if line.find("tracking_") >= 0:
tracking_flag = False
@ -177,7 +176,9 @@ def read_tracking_output(filepath):
if data.size == 256:
feats.append(data)
assert(len(feats)==len(boxes)), f"{filepath}, len(feats)!=len(boxes)"
if len(feats) != len(boxes):
return np.array([]), np.array([])
return np.array(boxes), np.array(feats)
@ -331,7 +332,6 @@ def read_similar(filePath):
line = line[:-1]
Dict = {}
if not line:
if len(one2one_list): SimiDict['one2one'] = one2one_list
if len(one2n_list): SimiDict['one2n'] = one2n_list

View File

@ -38,7 +38,7 @@
需分 2 步运行模块:
(1) runyolo()
该模块调用 imgs_inference.py 中模块 run_yolo
该模块调用 imgs_inference.py 中模块 run_yolo, 该模块重新定义了类 LoadImages, 对图像进行了旋转。
后续工作:
1). 将run_yolo模块与track_redi.yolo_resnet_tracker模块合并
2). 图像文件名标准化
@ -126,14 +126,14 @@
./contrast
feat_similar.py
seqfeat_compare.py
similarity_compare_sequence(root_dir)
inputs:
root_dir文件夹包含"subimgs"字段,对该文件夹中的相邻图像进行相似度比较
silimarity_compare()
功能对imgpaths文件夹中的图像进行相似度比较
feat_select.py
input_getout_compare.py
creatd_deletedBarcode_front(filepath)
(1) 基于 deletedBarcode.txt, 构造取出事件和相应的放入事件,构成列表并更新这些列表。
MatchList = [(getout_event, InputList), ...]
@ -145,6 +145,9 @@
precision_compare(filepath, savepath)
读取 deletedBarcode.txt 和 deletedBarcodeTest.txt 中的数据,进行相似度比较
stdfeat_analys()
genfeats.py
get_std_barcodeDict(bcdpath, savepath)
功能: 生成并保存只有一个key值的字典 {barcode: [imgpath1, imgpath1, ...]}
@ -207,6 +210,7 @@
one2one_contrast.py
已修改,未更新。
共6个地址
(1) stdSamplePath: 用于生成比对标准特征集的原始图像地址
(2) stdBarcodePath: 比对标准特征集原始图像地址的pickle文件存储{barcode: [imgpath1, imgpath1, ...]}
@ -283,6 +287,11 @@
(3) featpath调用 inference_image(), 对每一个barcode生成字典并进行存储
time_devide.py
runyolo()
执行 imgs_inference.py 中的 run_yolo()模块,该模块重新定义了类 LoadImages, 对图像进行了旋转。
show_seri()